N

Prime.

Instruction Sets Guide

Rev. 21.0

DOC9474-2LA

)

Instruction

Sets Guide

Second Edition

by
Marilyn Hammond

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PIR5, PT45, PI65, PTR00, PW153, PW200, PW250, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
6350, 9650, 9655, 9750, 9755, 9950, 9955, and 9955II are trademarks of
Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC9474-11A) January 1985
Update 1 (UPD9474-11A) October 1985
Update 2 (UPD9474-12A) February 1986
Update 3 (UPD9474-13A) April 1986
Second Edition (DOC9474-21A) August 1987

CREDITS

Editorial: Thelma Henner

Project Support: The CPU Group
Illustration: Mingling

Document Preparation: Kathy Normington
Production: dJudy Gordon

ii

.

)

B

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

D

)

ABOUT THIS BOCK
INTRODUCTION
Addressing Modes
Summary of Datatypes and Applicable
Instructions
S, R, AND V MODE

Introduction
Instructions

I MOCE
Introduction
Instructions
APPENDICES
Cordition Code Information
Addressing Information

Addressing Modes and Formats
Address Traps

Summary
Instruction Summary Charts

Hardware Considerations in Performance

Instruction Weights
Extensions to Instruction Weights

Archived Instructions

2455 Instruction Sets

Contents

1-1

1-5

B-1
B-18
B-22

D-1

D2
D-7

E-1
F-1

)

3

)

About
This Book

Prime’s 50 Series ™ family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6350™ 9955 II™ 9955 ™ 9950 ™

9755 ™ o750 ™ 9655 ™ 9650 ™

2755 ™ 2655 ™ /50 ™ 2450 ™

2350 ™ 2250 ™ 850 ™ 750 ™
650 ™ 550-II ™ 550 ™ 500 ™
450™ I450 ™ 400 ™ 350 ™
250-II™ 250 ™ 150 ™™

The earlier processors are the 2250, 850, 750, 650, 550-II, 550, 500,
450/, 1450, 400, 350, 250-II, 250, and 150.

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series addressing modes and
their instructions from a functional point of view.

NOTES TO THE READFR

Several groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
Series machines.

ORGANIZATION OF THIS GUIDE

This guide describes the instructions for S, R, V, and I addressing

modes. Each of these modes is introduced in Chapter 1. This chapter

also presents the 50 Series datatypes and their applicable

instructions. Chapters 2 and 3 contain detailed information about each

instruction -~ name, format, mnemonic, and required operands —— and a

complete description of each of the instruction’'s actions.

Chapters 1 through 3 may be summarized as follows:

® Chapter 1 contains brief descriptions of S, R, V, and I addressing
modes as well as a summary of datatypes with applicable
instructions.

o Chapter 2 is a dictionary of instructions executable in S, R, and V
modes.

e Chapter 3 is a dictionary of instructions executable in I mode.

Appendix A discusses the condition codes and their interpretation.
Appendix B presents tables of addressing information.
Apperdix C contains summary charts of the instructions.

Appendix D discusses hardware considerations in performance and
provides tables of relative instruction weights.

Appendix E has those instructions that have been archived.

Apperdix F discusses the instructions sets in relation to the 2455.

viii

I

J

D

)

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

Convention Explanation Example
UPPERCASE In command formats, words CRL

in uppercase indicate the
names of commands, optioms,
statements, and keywords.
Enter them in uppercase.

lowercase In command formats, words IDA address
in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Brackets Brackets enclose an optional [DISPLACEMENT\16]
(1] item.

Apostrophe An apostrophe preceding a ‘200
! number indicates that the
number is in octal.

\

Introduction

This chapter briefly describes the S, R, V, and I addressing modes as
well as introducing their data representations. Each datatype
operation is listed with its S, R, V, and I mode instructions.

ADDRESSING MODES

The 50 Series processors support four addressing modes, each of which

forms addresses differently. Depending on the program and personal
preference, one or two of these modes may be more useful than another.

The three most important modes are:
e V, or virtual
e I, or general register
® R, or relative

The fourth mode —— S, or sectored, mode —— is supported for historical
reasons.

1-1 Second Edition

INSTRUCTION SETS GUIDE

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

¥hen referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumilators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that T mode long operations can use.) The index registers are
specified by the source register field. General register O, however,
cannot be used for indexing.

General register relative (GRR) is an addressing capability added to
321 mode that speeds up big array accesses and often gives the effect
of using general registers as base registers. (This is sometimes
called TIX mode.) The offset is formed in GRR by adding the
displacement to bits 17 to 32 of the source register field. GRR is
used by the I mode instructions AIP and LIP. (GRR is not available for
the earlier processors listed in "About This Book".)

The C language pointer is used by the I mode instructions ACP, CCP,
DCP, ICP, LCC, SCC, and TCNP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains 0, it indicates that bits 1 to 8 (the left
byte) of an address contain the character to be used; when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
character. A null pointer is represented by a O in bits 4 through 32.
(The C language pointer and its instructions are not available for the
earlier processors listed in "About This Book".)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the source of the B bit, software depends on finding it
reset to zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation
when the source of the segment is a base register; otherwise it will
copy bit 4.

Second Edition 1-2

J

J

)

)

INTRODUCTION

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector O starts on location O and ends on 1location '777; Sector 1
begins on location ‘1000 and ends on location '1777; and so on.

An R mode instruction can reference any location in Sector O, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is O, the
instruction can only reference locations in Sector O. When S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC - ‘360 to
PC + '377, inclusive.

Note that an R mode instruction that specifies a location in the range

PC - ‘361 to PC - ‘400, inclusive, selects a special addressing code,
such as stack register.

S Mode

Iike R mode instructions, S mode instructions contain a sector bit.
When S is O, references are to Sector O. Vhen S is 1, however,
references are only to those locations within the sector containing the
instruction.

S mode is a holdover from early Prime machines that were based on the

Honeywell 316 and 516 minicomputers. When operating in S mode, the 50
Series processors act exactly as these early machines do.

Summary of Addressing Modes

Table 1-1 summarizes addressing information about S, R, V, and I modes.
For further information, see Chapter 3 of the System Architecture
Reference Guide.

1-3 Second Edition

INSTRUCTION SETS GUIDE

Table 1-1

Summary of Addressing Modes

| Mode | Address | Addressing Range |# Index! Indirection!
| | Length | | Regs | Levels

| .

| 16S direct | 14 bits | 1024 halfwords | One |

[[| | |

I 16S indirect | 14 bits | 16K halfwords | One | Multiple
I | | | l

| 328 direct | 15 bits | 1024 halfwords | Ons |

[| l | |

I 32S indirect | 15 bits | 32K halfwords | One | Multiple
! | | [|

I 32R direct | 15 bits | 1008 halfwords | One |

[| | | [

I 32R indirect | 16 bits | 32K halfwords | One | Multiple
| [[[|

| 64R direct | 16 bits | 1008 halfwords | One |

[| | | |

| 64R indirect | 16 bits | 64K halfwords | One | One

| | I [!

| 64V 16-bit | 16 bits | 64K halfwords: | One | One

[instructions| | +256 SB relative | I

[| I +256 LB relative | |

I | | +/-256 PC relativel |

I | I +512 PB absolute | [

| | [! |

| 64V 32-bit | 28 bits | 4 segments* | Two | One

[instructions 1 [[

| | | | [

| 64V indirect | 28 bits | 4096 segments* | Two | One

! | | [|

I 321 all | 28 bits | 12 segments* | Seven | One

| | | with GRR** | |

| | | | [

I 32T indirect - | 28 bits | 4096 segments* | Seven | One

[
I
|
|
|
I
|
|
I
I
1
[
|
I
|
I
|
|
|
I
I
|
|
|
f
|
I
I
I
I
I
I
I

* All segments contain 128 Kbytes.
** Four segments for the 2250 and earlier processors because they

have no GRR capability.

Second Edition

14

J

J

)

)

INTRODUCTION

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS

The 50 Series systems support several data representations. These
representations fall into the major groups:

o Fixed-point data

e Floating-point numbers
e Decimal integers

e Character strings

® Queues

Tables 1-2 and 1-3 list the instructions applicable to the datatype
operations (other than queues) available in S, R, V, and I modes. The
body of each table shows which instructions perform a specific
operation on a specific datatype. For detailed information about each
instruction, refer to the instruction dictionaries in Chapters 2 and 3
of this manual. For further information about datatypes, see Chapter 6
of the System Architecture Reference Guide.

Vhen using Tables 1-2 and 1-3, aa represents the set of arithmetic
corditions [BQ, GE, GT, LE, LT, NE J. Also, these tables do not
include instructions that operate on CBIT, LINK, the condition codes,

Or queues.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
general register. In addition, A and B represent the S and R mode
16-bit registers; L and E represent the V mode 32-bit registers.

1-5 Second Edition

INSTRUCTION SETS GUIDE

Table 1-2
Summary of Datatypes and Applicable S, R, V Mode Instructions

J

| | Size of Datatype (in Bits of Register) [
[Operation | |
| | 161 31 | 32 | 64 |32FP I64FP |128FP! Decl
[I (A) 1(A/B)I (L) I(I/E) I (FAC) 1 (DAC) 1 (QC) 1 ()
[I
| Load from memory | ILDA | DID | IDL | | FLD | DFID| QFLDI XMVI
			[[I		
Store to memory	STA	DST	STL		FST	DFST	QFST!
						I I	
Add	ADD	DAD	ADL		FAD	DFADI QFAD! XADI	
	[I	[
Subtract	SUB	DSB	SBL		FSB	DFSBI QFSBI XADI	
					I I		
I Multiply	MPY		MPL		FMP	DFMPI QFMP	XMP
						I [l	
I Divide	DIV		DVL		FDV	DFDVI QFDVI XDVI	
Increment	IRS,				l I I		
	AlA,		[I I		
	A2A					I	[
[I		!	I			
I Decrement	S1A,		I		I [
[S2A			[I [[
	I	[r	I				
AND	ANA		ANL	!	I		
	[I [
I OR	ORA					I	!
			[I		
XOR	ERA		ERL			!	[
	l				I	[
Complement	CMA					I	
Compare	CAS,	i CLS		FCS	DFCSI QFC,	XCMI	
	CAZ						QFCS
	!						
Logical test	Laa		LLaal	LFaal LFaal	I		
	[I	
Branch	Baa		Blaal	BFaal BFaal I			
							I
Logical left shift	ALL		IIL		[I	
	I			I	I		
Logical right shift	ARL		IRL		I I	1	
Arithmetic left shift	ALS	LIS	LIS			[[
	I			I I !			
Arithmetic right	ARS	IRS	IRS				I [
shift						I I	
[l		I I I				
Rotate left shift	AIR		ILIR		I		[

Second Edition 16

J

DY)

)

Table 1-2 (continued)
Summary of Detatypes and Applicable S, R, V Mode Instructions

INTRODUCTION

I [Size of Datatype (in Bits of Register) l
[Operation I 1
[I 161 31 | 32 | 64 |32FP I64FP |128FP! Decl
| I (A) 1(A/B)! (L) I(L/E) I (FAC) 1 (DAC) I1(QAC) ! ()1
[l
Rotate right shift	ARR		IRR			(
					I		
Clear	CRA	CRL	CRL ICRLE	l	l		
					I	l	
Clear left	CAL	CRA	CRA	CRL	[I [
		[[
Clear right	CAR	CRB	CRB	CRE			[
						I	
Interchange halves	ICA	IAB	IAB	ILE			[
			[
Interchange and	ICL	XCA	XCA				l
clear left [[l		I [
					[!	
Interchange and	ICR	XCB	XCB		[
clear right					[[
			[!		l	
Two's complement	TCA		TCL !	FCM	DFCMI QFCMI l		
	[[[l	!			
Set sign	SSM	SSM	SSM				
l				l		[
Clear sign	SSP	SSP	SSP	[[[
[[I [[I			
Change sign	GHS		CHS				
[
Convert datatypes:	[[
	[1	[[
Integer to	FLTA! FLOT!	FLTLI					
floating point					l		
!	!			[!	
Floating point	INTA! INT	INTLI n I	QINQ!				
I to integer							QIQRI 1
	[!					
I Binary to decimal	XBIDI	XBTD	XBIDI [l			
! Decimal to binary	XDIBI	XDTBI XDTB! I					
l							
Position for integer	PIDAI PID	PIDLI PITLI l	[
I divide	l		[[[
	[
Position after	PIMA	PIM	PIMLI PIMLI	! [l			
I multiply	I	[1				
						1	1
Skips	Saa		1	FSaal FSaal			

1-7 Second Edition

INSTRUCTION SETS GUITE

Table 1-3
Summary of Datatypes and Applicable I Mode Instructions

| Size of Datatype (in Bits of Register) |

Operation l |

I 186 | 32 | 64 |(32FP |64FP |128FPI Decl

I () | (R) I'(R/R+1)I(FAC) I (DAC) 1 (QAC)!I (-)!I

|

Load from memory I'IH 'L | | FL, | DFL | QFLDI XMV
| | | | | | | |

Store to memory | STH | ST | | FST | DFST!| QFST! |
| | | | [| | |

Add | AH | A | | FA | DFA | QFADI XADI
| | | | ! | | |

Subtract I SH 1§ | | FS | DFS | QFSBI XADI
| | | | | [| |

Multiply I MH I M | | FM | DFM | QFMPI XMPI|
1 [| | | | | |

Divide I TH I D | | FDV | DFDVI QFDVI XDVI
| [| | | | | |

Increment | IMH, | IM, | | | | [I
| IH1,! IR1,! | | | | |

| THR | IR2 | | | | | |

| | | l | | | |

Decrement | DMH, | DM, | I | | l I
| DH1,! IR1,! | | | | |

| DH2 | TR2 | | | | [|

| [| | | | | |

AND | NH | N | | | | | |
| | | | | | ! l

R ICH 10 | | | | | [
| | | | | [| |

XOR I XH | X | [| [! [
| | [| | | [|

Complement | CMH | CMR | | [| | |
| l | | | | | |

Compare I CH 1 C | | FC | DFC | QFC, | XCMI
| | | | | | [|

Logical test | LHaa! Laa | | LFaal LFaa.l | |
| | | | | | | I

Branch | BHaal BRaal | BFaal BFaal ! |
| | | | I | | |

Logical shift [| SHL | [[[[[
| | | | | | | |

Arithmetic shift | | SHA | | [[[|
| | | | | ! | |

Shift right 1 | SHR1l SR1 | | | | | |
| | | | [| | |

Shift right 2 | SHR2! SR2 | | [[[[
| | | | [| [|

Shift left 1 | SHL1I SL1 | | | | l |
| LHL1I | | I I | |

Second Edition

J

J

)

D

Table 1-3
Summary of Datatypes and Applicable I Mode Imstructions

INTRODUCTION

| | Size of Datatype (in Bits of Register) |
| Operation I |
I I 181 33 1 64 |I32FP 164FP |1128FPI Decl
| I () | (R) 1(R/R+1)1(FAC)I(DAC) 1 (QAC)! ()i
| |
| Shift left 2 | SHIL2I SIR | | | | I |
| | LHL2I | | | | I I
! I [| [I I I |
Shift left 3	LHL3I				I		
						I	
Rotate		ROT					
[[I		
Clear		CR				I	
				[I I			
Clear left	CRBL! CRHLI	[!			
[I		I [
Clear right	CRER! CRHR			I [
					!		
Interchange halves Il IRB I IRHI I							
I	I	I		[I			
Interchange and	ICBL! ICHL!	[
clear left I [[I			
[[[[[
i Interchange and	ICBRI ICHRI! I [
clear right [[[
Two's complement	TCH	TC		[I QFCMI			
				[[
Set sign	SSM	SSM		[I			
				[I [
! Clear sign	SSP	SSP			I	I	
		[l [
Change sign	CHS	CHS		l [I		
					!		
Convert datatypes:	!	[[!				
Integer to	FLTH! FLT	l		I			
floating point			[[!			
I !					!		
Floating point	INTH! INT				QINQ!		
I to integer						QIQRI	
	!	I					
I Binary to decimal	XBID! XBIDI XBIDI [1 [I						
		I (DACO)		I [
[Decimal to binary	XDTB	XDTBI XDTIBI I I I I					
			(DACO)				
Position for integer	PIDHI PID	PID	[I		
I divide 1			[[
I [[[[
Position after multiply! PIMHI PIM	PIM	[[I				
1-9 Second Edition

)

3

)

S, R, and V Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in S, R, and V modes. In the description of each instruction, you will

find:

The instruction mnemonic followed by any arguments.

The name of the instruction.

The bit format of the instruction.

The modes for which the instruction is valid.

Detailed information describing the instruction’s action.

Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 2-1 defines the dictionary notation.

2-1 Second Edition

INSTRUCTION SETS GUIDE

Table 2-1
Dictionary Notation

Symbol | Meaning

The A register.

Encompasses all the elements needed to specify an
effective address. This term is wused because various

addressing types require you to specify the elements
in different orders (such as indirect or pre- and
post-indexing).

Address pointer.

The 16-bit B register.

Base register.

Class bits.

Bit 1 of the keys.

28688 "%

The double precision floating-point accumulator with 48
bits of mantissa and 16 bits of exponent.

[

l

l

|

|

|

!

|

|

|

|

|

|

I

|

|

|

|

[

|

|

[

|

| Displace-! The number of halfwords to be added to the base register
I ment to form the effecive address.

I
| The 32-bit E register.

|
| Effective address.

|
! Floating-point accumulator.

|
|
[
|
[
I
I
|
|
|
|
|
|
|
!
[
|
|

The single precision floating-point accumulator with 48
bits of mantisse and 16 bits of exponent.

Field address register.
Field length register.
A 16-bit unit of memory.
Indirect bit.

The 32-bit L register.

“ " Egg gUE"C
-
a

Bit 3 of the keys. Not used in S and R modes.

Offset The number of halfwords from the starting address of a

segment .

Second Edition -2

J

J

)

3

S, R, AND V MOCE

Table 2-1 (continued)
Dictionary Notation

Symbol | Meaning

The quad precision floating-point accumilator with 96
bits of mantissa and 16 bits of exponent.

l |
! |
| [|
| [[
| | [
I skip | Skip next 16-bit halfword before continuing execution. I
| | [
| Word | A 32-bit unit of memory. |
| | |
I X | The X register (indexing). |
[| |
| XB | Auxiliary base register. |
[[|
1Y | The Y register (indexing). |
| | |
I m\n | Specifies the number of bits, n, occupied by field m. I
I | |
L] | Specifies an optional argument. |

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 2-2 lists the resumable assembly language instructions.

Table 2-2
Resumable Instructions

| Instructions |
f |
| ARGT XAD XBTD XCM |
| XDTB XDV XED XMP |
| XMV ZCM ZED ZFIL |
| ZMV ZMVD ZTRN STEX |

2-3 Second Edition

INSTRUCTION SETS GUIDE

These instructions depend on the settings in certain registers to
determine whether they are being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
s0 modified are noted per instruction description.

Storing Data Into the V and T Mode Instruction Stream

For the 6350 and 9v50 to 9955 II, you must wait five instructions
before executing data after any instruction that stores data into
memory. If in doubt about the next five instructions (temporally) to
be executed, use a mode change instruction to the current addressing
mode, such as E64V, to allow the stored data to be executed. The rest
of the 50 Series has no such restriction.

Instruction Formats

All S, R, and V mode instructions belong to one of the following
instruction types:

e S and R Mode Memory Reference, Short
® V Mode Memory Reference, Short
e R Mode Memory Reference, Long
® V Mode Memory Reference, Long
® V Mode Generic AP (Address Pointer)
e S, R, and V Mode Generic Type A
S, R, and V Mode Generic Type B
e S, R, and V Mode Shift
e S, R, and V Mode Skip
The format of each instruction type is shown in Figure 2-1.
Short and long memory reference instructions have an opcode in bits 3

to 6. The value of this opcode ranges from 1 to ‘17, inclusiwve, with
the exception of ‘14, which is reserved for I/0. For opcode ‘15, the X

bit is part of the opcode.

In addition, long memory reference instructions have an opcode
extension contained in bits 13 to 14. Generic AP instructions have a
generic A or B format (where bits 7 to 16 contain the opcode extension)
followed by a 32-bit address pointer.

Second Edition 24

J

J J

D)

)

)

S, R, AND V MOLE

Generic A and B, shift, and skip instructions are 16 bits long, all of
which form an opcode. The values of bits 1 and 2 determine the basic
instruction type: 11 for Generic A, 00 for Generic B, O1 for shifts,
and 10 for skips. Bits 3 to 6 contain 0. Bits 7 to 16 contain an
opcode extension. For shifts, bits 10 to 16 of the opcode extension
contain the two’'s complement of the number of shifts to perform.

1 2 3 617 16

I T 1 X | OP | DISPLACEMENT |

S and R Mode Memory Reference, Short

1 2 3 6 7 8 16

I'T 1 X1 OP | 1 | DISPLACEMENT |

V Memory Mode Reference, Short

1 2 3 6 7 12 13 1415 1617 32

I T 1 X | OPOODE | 110000 | OPEX | CB | [OPTIONAL DISP] |

R Mode Memory Reference, Long (Extended) Format

1 2 3 6 v 11 12 13 14 15 16 17 32

I T 1 X1 OPCODE | 11000 | Y | OPEX | BR | DISPLACEMENT |

33 48

[AUGMENT CODE* !

V Mode Memory Reference, Long Displacement Format

*For quad operations only.

S, R, and V Mode Instruction Formats
Figure 2-1

2-5 Second Edition

INSTRUCTION SETS GUIDE

1 16
| GENERIC A CR B l
17 20 21 2R 23 24 25 32 33
I BIT + I 1 O | BR | (00000000 | OFFSET

Generic AP Format

1 67 16

| 110000 | OPCODE EXT |

S, R, V Modes Generic A Format

1 67 16

| 000000 | OPCODE EXT |

S, R, V Modes Generic B Format

1 67 16

| 010000 | OPCODE EXT |

S, R, V Modes Shift Format

1 67 16

| 100000 | OPCODE EXT |

S, R, V Modes Skip Format

S, R, and V Mode Instruction Formats
Figure 2-1 (continued)

Secord Edition 2-6

J J

J

A

S, R, AND V MCDE

INSTRUCTIONS

p Al
Add 1 to A

1100001010000110 (S, R, Vmode form)

Adds 1 to the contents of A and stores the result in A. If A initially
contains (2**15)-1, an integer exception occurs and the instruction
loads -(2**15) into A. If no integer exception occurs, the instruction
resets CBIT to 0. LINK contains the carry-out bit. The condition
codes reflect the result of the operation. (See Apperdix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P AcA
Add 2 to A
1100000011000100 (S, R, Vmode form)

Adds 2 to the contents of A and stores the result in A. If A initially
contains (2**15)-1 or (2**15)-2, an integer exception occurs and the
instruction loads -(2**15)+1 or —(2**15), respectively, into A. If no
exception occurs, the instruction resets CBIT to O. LINK contains the
carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> ABQ address
Add Entry to Bottom of Queue
1100001111001110 (V mode form)
AP\32

Adds the entry contained in A to the bottom of the queue referenced by
the AP. (AP points to the queue’s QCB.) Sets the condition codes to
reflect BQ if the queue is full, or to NE if not full. Ileaves the
values of CBIT and LINK unchanged. See Chapters 6 and 11 of the System
Architecture Reference Guide for more information about queues and

queue operations.

2-7 Second Edition

INSTRUCTION SETS GUIDE

> aca

Add CBIT to A
1100001010001110 (8, R, Vmode form)
Adds the value of CBIT to the contents of A and stores the result in A.
If the initial value of A is (2**15)-1 and CBIT is 1, the instruction
loads —-(2**15) into A and an integer exception occurs. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds CBIT to bit 16 of A.

P> ADD address
Add
IX011011000YO00BR2 (Vmode long)
DISPLACEMENT\ 16

IX011011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X0 110 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. PFetches the 16-bit contents of
the location specified by EA and adds them to the contents of A.
Stores the results in A.

If the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

Vhen an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 16 bits are the 16 LSBs of the
correct answer, which needs 17 bits to be correctly represented.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Second Edition 2-8

J

J

)

)

S, R, AND V MODE

P> ADL address
Add Iong
IX011011000Y11EB\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of L.
Stores the results in L.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instructior resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception occurs. If
the sum is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

P ADLL
Add ILINK to L
1100001000000000 (V mode form)
Adds the contents of LINK to the contents of L and stores the result in
L. If the initial value of L is (2**31)-1 and LINK is 1, an integer
exception occurs. When an integer exception occurs, the results are of
the opposite sign of the correct answer. In addition, the 32 bits are
the 32 1LSBs of the correct answer, which needs 33 bits to be correctly
represented.

If no integer exception occurs, the instruction resets CBIT to 0. LINK
contains the carry-out bit. The condition codes reflect the result of
the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds the value of LINK to bit 32 of L.

2-9 Second Edition

INSTRUCTION SETS GUIDE

P> AIFA far
Add L to FAR
0O00000101100F001 (Vmode format)

Adds the two's complement value contained in L to the offset and bit
number fields of FAR and stores the result in the specified FAR.
leaves the values of IINK and CBIT indeterminate. The values of the
condition codes remain unchanged.

Figure 2-2 shows the format of L and the specified FAR for this
instruction.

1 32

| Number of bits to add to address pointer |

Format of L
1 16 17 32 33 36
] RING, SEGMENT I OFFSET # [BIT # |
Format of FAR

L and FAR Format for ALFA
Figure 2-2

E

>

n
left Logical
100001100MNM6 (S, R, Vmode form)

o>

Shifts the contents of A left the appropriate number of bits, bringing
zeros in through bit 16 as needed. CBIT and LINK contain the value of
the last bit shifted out; the values of the other bits shifted out are
lost. Leaves the values of the condition codes unchanged. See Chapter
6 of the System Architecture Reference Guide for more information about
shifts.

N contains the two’'s complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

Second Edition 2-10

J

)

N

)

S, R, AND V MODE

p AIR n
A left Rotate
0100001110N6 (S, R, Vmode form)

Shifts the contents of A to the left, rotating bit 1 into bit 16.
Stores the result in A. CBIT and LINK contain the value of the last
bit rotated into bit 186. ILeaves the values of the condition codes
unchanged. See Chapter 6 of the System Architecture Reference Guide
for more information about shifts.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p AlSn
A Arithmetic Ieft Shift
0100001101N6 (S, R, Vmode form)

Shifts the contents of A to the left, bringing zeros in on the right.
Stores the result in A. If bit 1, the sign Dbit, changes state, the
shift has resulted in a loss of significance and produces an integer
exception. If no integer exception occurs, the instruction resets CBIT
to 0. The value of LINK is indeterminate. ILeaves the values of the
condition codes unchanged. See Chapter 6 of the System Architecture
Reference Guide for more information about shifts.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> ANA address
AND to A
IX001111000Y00BR\2 (V mode long)
DISPLACEMENT\ 16

IX001111000000¢CB\2 (R mode long)
[DISPLACEMENT\16]

I X001 1 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. Iogically ANDs the 16-bit
contents of the location specified by EA with the contents of A, and

stores the result in A. leaves the values of CBIT, LINK, and the
condition codes unchanged.

2-11 Second Edition

INSTRUCTION SETS GUIDE

P> ANL address
AND to A Long
IX001111000Y11B\2 (Vmode form)

Calculates a 32-bit effective address, EFA. Logically ANDs the 32-bit
contents of the location specified by EA with the contents of L, and
stores the result in L. leaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

P> ARGT
Argument Transfer
0000000110000101 (Vmode form)

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. VWhen the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the wvalues of CBIT, LINK, and the condition codes are
indeterminate.

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will
destroy the return pointer for PCL, producing indeterminate results.

For more information about argument transfers, refer to the section on
procedure calls in Chapter 8 of the System Architecture Reference
Guide.

P ARL n
A Right Logical
0100000100N6 (S, R, Vmode form)

Shifts the contents of A right the appropriate number of bits, bringing
zeros in through bit 1. CBIT and LINK contain the value of the last
bit shifted out; the values of the other bits shifted out are lost.
Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

Second Edition 2-12

J

J

y

)

)

S, R, AND V MODE

0O0000110N6 (S, R, Vmode form)

Shifts the contents of A to the right, rotating bit 16 into bit 1.
CBIT and LINK contain the value of the last bit rotated into bit 1.
Leaves the values of the condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P ARS n
A Arithmetic Right Shift
0100000101N6 (S, R, Vmode form)

Shifts the contents of A to the right arithmetically, shifting copies
of bit 1, the sign bit, into the vacated bits. CBIT and LINK contain
the value of the last bit shifted out: the values of the other bits
shifted out are lost. Ieaves the wvalues of the condition codes

unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P ATQ address
Add Entry to Top of Queue
1100001111001111 (Vmode form)
AP\32

Adds the entry contained in A to the top of the queue referenced by the
AP. (AP points to the queue’'s QCB.) Sets the condition codes to
reflect BQ if the queue is full, or to NE if not full. Ieaves the
values of CBIT and LINK unchanged. For more information about queues
and queue manipulation, see Chapters 6 and 11 of the System
Architecture Reference Guide.

2-13 Second Edition

INSTRUCTION SETS GUIDE

P> BCEQ address
Branch on Condition Code EQ

1100001110000010 (Vmode form)
ATTRESS\ 16

If the condition codes reflect equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCGE address
Branch on Condition Code GE
1100001110000101 (V mode form)
ATTRESS\ 16

If the condition codes reflect greater than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P> BOGT address
Branch on Condition Code GT
1100001110000001 (V mode form)
ATTRESS\16

If the condition codes reflect greater than O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCLE address
Branch on Condition Code LE
1100001110000000 (V mode form)
ATTRESS\ 16

If the condition codes reflect less than or equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-14

) I

J

J

b

3

Y

S, R, AND V MODE

P> BCLT address
Branch on Condition Code LT
1100001110000100 (V mode form)
ATTRESS\ 16

If the condition codes reflect less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BONE address
Branch on Condition Code NE
1100001110000011 (V mode form)
ATITRESS\ 16

If the condition codes reflect not equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCR address
Branch on CBIT Reset to O
1100001111000101 (Vmode form)
ATTRESS\ 16

If CBIT has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Leawves the values of CBIT, LINK, and the condition codes

unchanged.

P> BCS address
Branch on CBIT Set to 1
1100001111000100 (V mode form)
ATTRESS\16

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value O, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

2-15 Second Edition

INSTRUCTION SETS GUIDE

P> EIX address
Branch on Decremented X
1100000111011100 (V mode form)
ATIDRESS\ 16

Decrements the contents of X by one and stores the result in X. If the
decremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to O, execution continues with the
next instruction. ILeaves the values of CBIT, LINK, and the condition
codes unchanged. :

P> EDY address
Branch on Decremented Y
1100000111010100 (Vmode form)
ATTRESS\ 16

Decrements the contents of Y by one and stores the result in Y. If the
decremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to O, execution continues with the
next instruction. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

P> BEQ address
Branch on A Equal to O

1100000110001010 (V mode form)
ADDRESS\ 16

If the contents of A are equal to 0O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are not equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

P> BFEQ address
Branch on Floating Accumulator Equal to O

1100001110001 010 (V mode form)
ADTRESS\ 168

If the contents of the floating accumulator are equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are not equal to O, execution continues with the
next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) ILeaves the values of LINK and CBIT
unchanged.

Second Edition 2-16

J

J

J

3

My D)

S, R, AND V MODE

BFEQ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P> BFGE address
Branch on Floating Accumulator Greater Than or Equal to O
1100001110001101 (V mode form)
ATDRESS\ 16

If the contents of the floating accumulator are greater than or equal
to O, the instruction loads the specified address into the program
counter. This address must be within the current segment. If the
floating accumulator contents are less than O, execution continues with
the next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) Ieaves the values of LINK and CBIT
unchanged. BFGE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> BFGT address
Branch on Floating Accumulator Greater Than O
1100001110001001 (Vmode form)
ADTRESS\ 16

If the contents of the floating accumulator are greater than O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are less than or equal to O, execution continues
with the next instruction. The condition codes contain the result of
the comparison. (See Appendix A.) ILeaves the values of LINK and CBIT
unchanged. BFGT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to =zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> BFLE address
Branch on Floating Accumulator Less Than or Equal to O
1100001110001000 (V mode form)
ATTRESS\ 16

If the floating accumulator contents are less than or equal to O, BFLE
loads the specified address into the program counter. This address
must be within the current segment. If the floating accumlator
contents are greater than O, execution continues with the next
instruction. The condition codes contain the comparison result. (See
Apperdix A.) Ieaves the values of LINK and CBIT unchanged.

_-17 Second Edition

INSTRUCTION SETS GUIDE

BFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero amd
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P> EBFLT address
Branch on Floating Accumilator Less Than O
1100001110001100 (Vmode form)
ATDRESS\16

If the contents of the floating accumilator are less than O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are greater than or equal to O, execution
continues with the next instruction. The condition codes contain the
result of the comparison. (See Apperdix A.) Ieaves the values of LINK
and CBIT unchanged. BFLT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> EBFNE address
Branch on Floating Accumulator Not Equal to O
1100001110001011 (Vmode form)
AITRESS\ 16

If the contents of the floating accumulator are not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are equal to O, execution continues with the next
instruction. The condition codes contain the result of the comparison.
(See Appendix A.) Ieaves the values of LINK and CBIT unchanged. BFNE
works correctly only on normalized or nearly normalized numbers because
it checks the first 32 fraction bits only for equal to zero and less
than zero. (See Chapter 6 in the System Architecture Reference Guide.)

P> BGE address
Branch on A Greater Than or Equal to O
1100000110001101 (Vmode form)
ATDRESS\ 16

If the contents of A are greater than or equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the A contents are less than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged. This instruction has the same
operation as BIGE.

Second Edition 2-18

4 J

J I

D)

3

S, R, AND V MOCE

P> BGT address
Branch on A Greater Than O
1100000110001001 (V mode form)
AITRESS\16

If the contents of A are greater than 0O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are less than or equal
to O, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

P> BIX address
Branch on Incremented X
1100001011011100 (V mode form)
ATDRESS\ 16

Increments the contents of X by one and stores the result in X. If the
incremented value is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented wvalue is equal to O, execution continues with the
next instruction. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

P> BIY address
Branch on Incremented Y
1100001011010100 (V mode form)
ATTRESS\16

Increments the contents of Y by one and stores the result in Y. If the
incremented velue is not equal to O, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to O, execution continues with the
next instruction. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

P> EBLE address
Branch on A Less Than or Equal to O
1100000110001000 (V mode form)
ATTRESS\ 16

If the contents of A are less than or equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the A contents are greater than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) ILeaves the
values of LINK and CBIT unchanged.

2-19 Second Edition

INSTRUCTION SETS GUIDE

P> BLEQ address
Branch on L Equal to O
1100000111000010 (V mode form)
ATTRESS\16

If the contents of L are equal to O, the instruction loads the
specified address into the program counter. This address must be
within the ocurrent segment. If the L contents are not equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

P> BIGE address
Branch on L Greater Than or Equal to O
1100000110001101 (Vmode form)
ATTRESS\ 16

If the contents of L are greater than or equal to 0O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the L contents are less than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and GBIT unchanged. This instruction has the same
operation as BGE.

P> BIGT address
Branch on L Greater Than O
1100000111000001 (V mode form)
AITRESS\16

If the contents of L are greater than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are less than or equal
to O, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

P> BLLE address
Branch on L Less Than or Equal to O
1100000111000000 (Vmode form)
ATDRESS\ 16

If the contents of L are less than or equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the L contents are greater than O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Ieaves the
values of LINK and CBIT unchanged.

Second Edition 2-20

J

J

h)

S, R, AND V MOLE

P> BLLT address
Branch on L Less Than
11000001100
ATTRESS\16

1100 (Vmode form)

If the contents of L are less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are greater than or
equal to O, execution continues with the next instruction. The
condition codes contain the result of the comparison. (See Appendix
A.) Ieaves the values of LINK and CBIT unchanged. This instruction
has the same operation has BLT.

P> BINE address
Branch on L Not Equal to O
1100000111000011 (Vmode form)
ATTRESS\ 16

If the contents of L are not equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Ieaves the
values of LINK and CBIT unchanged.

P> EIR address
Branch on LINK Reset to O
1100001111000111 (Vmode form)
ATTRESS\ 16

If LINK has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. ILeaves the values of CBIT, LINK, and the condition codes

unchanged.

P> ELS address
Branch on LINK Set to 1
1100001111000110 (Vmode form)
ATTRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value O, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

221 Second Edition

INSTRUCTION SETS GUIDE

P> EBLT address
Branch on A Iess Than O
110000011000
ATTRESS\ 16

1100 (V mode form)

If the contents of A are less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are greater than or
equal to O, execution continues with the next instruction. The
cordition codes contain the result of the comparison. (See Appendix
A.) Leaves the values of LINK and CBIT unchanged. This instruction
has the same operation as BLLT.

P> BMEQ address
Branch on Magnitude Condition EQ

1100001110000010 (Vmode form)
AITRESS\16

If the condition codes indicate magnitude equal to O, the instruction
loads the specified address into the program counter, like BCEQ. BMEQ
is intended for magnitude comparisons after a compare or subtract
instruction. This address must be within the current segment. If the
cordition codes indicate some other condition, execution continues with
the next instruction. Ieaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

P> BMGE address
Branch on Magnitude Condition GE
1100001111000110 (V mode form)
ADDRESS\16

If LINK has the value 1, the instruction loads the specified address
into the program counter, like BLS. BMGE is used to determine if the
magnitude of the A/L register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
must be within the current segment. If LINK has the value O, execution
continues with the next instruction. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition -2

J

J

)

)

S, R, AND V MOIE

P> BMGT address
Branch on Magnitude Condition GT
1100001111001000 (V mode form)
AITRESS\ 16

If LINK is 1 and the condition codes reflect not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BMLE address
Branch on Magnitude Condition LE
1100001111001001
ATITRESS\ 16

If LINK is O or the condition codes reflect equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

P> BMLT address
Branch on Magnitude Condition LT
1100001111000111 (Vmode form)
AITRESS\16

If LINK has the value O, the instruction loads the specified address
into the program counter, like BIR. BMLT is used to determine if the
magnitude of the A/L register quantity is less than the memory quantity
after a compare or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Ieaves the wvalues of LINK, CBIT, and the
condition codes unchanged.

B> BMNE address
Branch on Magnitude Condition NE
1100001110000011 (Vmode form)
ATTRESS\16

If the condition codes indicate magnitude not equal to O, the
instruction loads the specified address into the program counter, like
BCNE. BMNE is intended for magnitude comparisons after a compare or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

2-23 Second Edition

INSTRUCTION SETS GUIDE

P> EBNE address
Branch on A Not Equal to O
1100000110001011 (V mode form)
ADTRESS\16

If the contents of A are not equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents are equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

Second Edition 2-24

J

J

M)

)

S, R, AND V MODE

2

>

Clear A left Byte
1100001000101000 (8, R, Vmode form)

Clears the left byte of A to 0. ILeaves the values of CBIT, LINK, and
the condition codes unchanged.

P> CALF address
Call Fault Handler
0000000111000101 (Vmode form)
AP\32

The address pointer in this instruction is to the ECB of a fault
routine. The instruction uses this pointer to transfer control to the
fault routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

P CAR
Clear A Right Byte
1100001000100100 (S, R, Vmode form)

Clears the right byte of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

P> CAS address
A and Skip
IX100111000Y00BR2 (Vmode long)
DISPLACEMENT\ 16

IX100111000000CB\2 (R mode long)
[DISPLACEMENT\16]

IX 100 1DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. For 16-bit two’'s complement

signed values only, compares the contents of the A register to the
contents of the location specified by EA and skips as follows:

Condition Skip
Contents of A > contents of EA. No skip.
Contents of A = contents of EA. Skip 16 bits (one halfword).
Contents of A < contents of EA. Skip 32 bits (two halfwords).

2-25 Second Edition

INSTRUCTION SETS GUIDE

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

p caz
Compare A With O
1100000010001100 (S, R, V mode form)

Compares the contents of A with 0. Skips as follows:

Condition Skip
Contents of A > O. No skip.
Contents of A = 0. Skip 16 bits (one halfword).

Contents of A < O. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

P> CEA
Compute Effective Address
0000000001001 001 (S, R mode form)

Interprets the contents of A as a 16-bit indirect address in the
current addressing mode. Calculates an effective address, EA, from the
indirect address and loads the final address into A. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

p cGT
Computed GOTO
0000001011001 100 (Vmode form)
INTEGER N\16
BRANCH AITRESS 1\16

BRANCH AITRESS (N-1)\16

If the contents of A are greater than or equal to 1 and less than the
specified integer N that follows the opcode, the instruction adds the
contents of A to the contents of the program counter to form an
address. (The program counter points to the integer N following the
opcode.) ILoads the contents of the location specified by this address
into the program counter. If the contents of A are not within this
range, the instruction adds integer N to the contents of the program
counter and stores the result in the program counter. The values of
CBIT, LINK, and the condition codes are indeterminate.

Second Edition 2-26

4 J

b

3

S, R, AND V MODE

Note

Each of the branch addresses following the CGT instruction
specifies a location within the current procedure segment.

p cus
Change Sign
1100000000010100 (S, R, Vmode form)

Complements bit 1 of A. lLeaves the values of CBIT, LINK, and the
condition codes unchanged.

P> CLS address
L and Skip
IX100111000Y11B\2 (Vmode form)
DISPLACEMENT\16

Calculates an effective address, EA. For 82-bit two’s complement
signed values only, compares the contents of L to the contents of the
32-bit location specified by EA and skips as follows.

Condition Skip
Contents of L > contents of EA. No skip.
Contents of L = contents of EA. Skip 16 bits (one halfword).

Contents of L < contents of EA. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

p oA
Complement A
1100000100000001 (S, R, Vmode form)

Forms the one’s complement of the contents of A by inverting the value

of each bit, and stores the result in A. Ieaves the values of CBIT,
LINK, and the condition codes unchanged.

2-27 Secornd Edition

INSTRUCTION SETS GUIDE

P CrA
Clear A to O
1100000000100000 (S, R, V mode form)

Clears the contents of A to 0. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

P CrRB
Clear B to O
1100000000001101 (S, R, Vmode form)
1100000000001100

Clears the contents of B to 0. Ieaves the values of CBIT, LINK, and
the condition codes unchanged

Note

Opcode ‘140014 executes both a CRB and a FDBL. This is a
conversion aid for P300 programs. This opcode should not be
used; it is implemented for compatibility’'s sake only.

D CrRE
Clear E to O
1100001100000100 (V mode form)

Clears the contents of E to 0. Ieawves the values of CBIT, LINK, amd
the condition codes unchanged.

p CrRL
Clear L to O
1100000000001000 (8, R, Vmode form)

Clears the contents of L to 0. ILeaves the values of CBIT, LINK, and
the condition codes unchanged.

>

05

ear Land E to O
100001100001000 (V mode form)

Clears the contents of E and L to 0. leaves the values of LINK, CBIT,
and the condition codes unchanged.

Second Edition 2-28

4)

)

3

)

S, R, AND V MODE

P Csa
Copy Sign of A
1100000011010000 (8, R, Vmode form)

Sets CBIT equal to the value of bit 1 of A and clears bit 1 of A to O.

The value of LINK is indeterminate. Ieaves the values of the condition
codes unchanged.

2-29 Second Edition

INSTRUCTION SETS GUIDE

P> DAD address
Double Add
IX011011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X0 110 DISPLACEMENT\10 (S, R mode form)

Calculates an effective address, FA. Fetches the 31-bit contents of
the location specified by EA and adds them to the 31-bit contents of A
and B. Stores the result in A and B.

If the result is greater than or equal to 2**30, an integer exception
occurs and the instruction loads bit 1 of A with a 1, and bits 2 to 16
of A and bits 2 to 16 of B with (result - (2**30)). Bit 1 of B
contains O.

If the result is less than —(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a O and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
contains O.

If no integer exception occurs, CBIT is reset to O. At the end of the
instruction, LINK contains the carry-out bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception oocurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference (uide for more information.

Notes

1. Bit 17 of each 31-bit integer must be 0. If nonzero,
unpredictable results will occur.

2. This instruction executes in double precision mode only.

P IEL
Enter Double Precision Mode
0000000000000111 (S, R mode form)

Enters double precision mode by setting bit 2 of the keys to 1.
Subsequent IDA, STA, AID, and SUB instructions manipulate 31-bit
integers and are interpreted as DOLD, DST, DAD, and DSB, respectively.
Ieaves the values of CBIT, LINK, and the condition codes unchanged. In
V or I mode, bit 2 of the keys has no effect.

Second Edition 2-30

J

J

)

D

A

)

S, R, AND V MOCE

P> DFAD address
Double Precision Floating Add
IX011011000Y10B\2 (Vmode long)
DISPLACEMENT\16

IX011011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the double precision number
in the location specified by EA to the 64-bit contents of the DAC.
(See Chapter 6 of the System Architecture Reference Guide for more
information.) Normalizes the result and loads it into the DAC. An
overflow causes a floating-point exception. If no floating—point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

For 780 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p oFM
Double Precision Floating Complement
1100000101111100 (R, Vmode form)

Forms the two's complement of the double precision number in the DAC
and normalizes it if necessary. (See Chapter 6 of the System
Architecture Reference Guide.) Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to O. The values of LINK and the
cordition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-31 Second Edition

INSTRUCTION SETS GUIDE

P L[rCS address
Double Precision Floating Point Compare and Skip
IX100111000Y10B\2 (Vmode long)
DISPLACEMENT\16

IX100111000010CB\2 (R mode long)
[DISPLACEMENT\16 |

Calculates an effective address, EA. Compares the DAC contents (see
Chapter 6 of the System Architecture Reference Guide) to the contents
of the 64-bit location specified by EA and skips as follows.

Condition Skip
DAC contents > EA contents. No skip.
DAC contents = EA contents. Skip 16 bits (one halfword).
DAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.
On some processors, DFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract
operation, resulting in a proper comparison.

P IFDV address
Double Precision Floating Point Divide
IX111111000Y10B\2 (Vmode long)
DISPLACEMENT\ 16

IX111111000010CB\=2 (R mode long)
[DISPLACEMENT\16)

Calculates an effective address, EA. Divides the contents of the DAC
by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result and stores
the whole quotient in the DAC. An overflow or a divide by O causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-32

J

)

)

S, R, AND V MODE

P> DFID address
Double Precision Floating Point Load
IX001011000Y10B\ (Vmode long form)
DISPLACEMENT\ 16

IX001011000010CB\2 (R mode long form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the DAC. (See Chapter 6 of the %
Architecture Reference Guide.) ILeaves the values of LINK, CBIT,

the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the DAC.

P> IFLX address
Double Precision Floating Point Load Index
I0110111000Y10B\2 (Vmnode long)
DISPLACEMENT\16

I0110111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the index register, X, with
four times the 16-bit contents of the location specified by EA. lLeaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

DFLX cannot do indexing. See Apperdix B for more information.

P> DFMP address
Double Precision Floating Point Multiply
IX111011000Y1G0BEBR\2 (V mode long)
DISPLACEMENT\ 16

IX111011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
DAC by the 64-bit contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result, if necessary, and stores it in the DAC. An overflow causes a
floating-point exception; if none occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

2-33 Second Edition

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the DFMP instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> DFSB address
Double Precision Floating Point Subtract
IX011111000Y10BR\2 (V mode long)
DISPLACEMENT\ 16

IX011111000010¢CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the locations specified by EA from the contents of the DAC. (See
Chapter 6 of the System Architecture Reference Guide.) Loads the
result in the DAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to O. The values of
LINK and the condition codes are indeterminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P DFST address
Double Precision Floating Point Store
IX010011000Y10ER\ (V mode long)
DISPLACEMENT\ 16

IX010011000010¢CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the DAC
into the location specified by EA. (See Chapter 6 of the §ys_t__
Architecture Reference Guide.) Ieaves the values of CBIT, LINK,

the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

Second Edition -4

J

Y

J

)

)

S, R, AND V MODE

P> DIV address
Divide
IX111111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X111 1 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Divides the 31-bit contents of A
and B by the 16-bit contents of the location specified by EA. Stores
the 16-bit quotient in A and the 16-bit remainder in B. The sign of
the remainder equals the sign of the dividend.

Overflow occurs when the quotient is less than -(2**15) or greater than
(2**15)-1. An overflow or a divide by O causes an integer exception.
If no integer exception occurs, CBIT is reset to 0. This instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs when bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> DIV address
Divide
IX111111000Y00BR\2 (V mode long)
DISPLACEMENT\16

I X111 1 DISPLACEMENT\10 (V mode short)

Calculates an effective address, EA. Divides the contents of L by the
16-bit contents of the location specified by EA. Stores the 16-bit
quotient in A and the 16-bit remainder in B. The sign of the remainder
equals the sign of the dividend.

Vhen the quotient is less than -(2**15) or greater than (2**15)-1, an
overflow occurs, causing an integer exception. A divide by O also
causes an Iinteger exception. If no integer exception occurs, CBIT is
reset to 0. This instruction leaves the wvalues of LINK and the
cordition codes indeterminate.

If the integer exception occurs when bit 8 of the keys is O, the
instruction sets CBIT to 1. If bit 8 is 1, the instruction sets CBIT
tol and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

2-35 Second Edition

INSTRUCTION SETS GUIDE

P> IID address
Double Load
IX001011000000¢CB\2 (R mode long)
[DISPLACEMENT\16] '

I X0 010 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Loads the 16-bit contents of the
location specified by EA into A, and the 16-bit contents of the
location specified by EA+l1 into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This instruction executes only in double precision mode.

P RN
Double Round From Quad
0100000011000000 (V mode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 50 to 96 of QAC are
not O, or bit 48 of QAC contains 1, the instruction adds the value of
bit 49 to that of bit 48 (unbiased round) and clears bits 49 to 96 of
QAC to 0. If any other condition exists, no unbiased rounding occurs
but bits 49 to 96 of QAC are still cleared to 0. After any rounding
and clearing occurs, the instruction normalizes the result and loads it
into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DIRN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-36

J

J J

DD

3

S, R, AND V MODE

P RM
Double Round From Quad Towards Negative Infinity
1100000101111001 (Vmode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 96 of QAC
contain =zeros, the instruction ends. In any other case, the
instruction clears bits 49 to 96 to O, normalizes the result, and
places it in bits 1 to 64 of QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes are indeterminate.
Note
If IRNM is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P IRNP
Double Round From Quad Towards Positive Infinity
0100000011000001 (Vmode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 48 of QAC, clears bits
49 to 96 to 0, the instruction normalizes the result and places it in
bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-37 Second Edition

INSTRUCTION SETS GUIDE

TRNZ
Double Round From Quad Towards Zero
0100000011000010 (V mode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains O, the instruction ends. If bits 49 to 96 of QAC
contain zeros and bit 1 contains 1, the instruction adds 1 to the value
contained in bit 48 of QAC, clears bits 49 to 96 to O, normalizes the
result and places it in bits 1 to 64 of QAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If TRNZ is used for any earlier system listed in “"About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p IRX
Decrement and Replace X
1100000010001000 (S, R, Vmode form)

Decrements the contents of X by 1 and stores the result in X. Skips
the next memory Ilocation if +the decremented value is 0. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> DSB address
Double Subtract
IX011111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0111 DISPLACEMENT\10 (S mode; R mode short)
Calculates an effective address, EFEA. Fetches the 3l-bit integer
contained in the locations specified by EA and EA+l and subtracts it

from the 31-bit integer contained in A and B. Stores the result in A
and B.

Second Edition 2-38

J

J

)

S, R, AND V MODE

If the result is greater than or equal to 2**30, an integer exception
occurs and the DSB instruction loads bit 1 of A with 1, and bits 2 to
16 of A ard 2 to 16 of B with the absolute value of (result - (2*%*30)).
Bit 1 of B must be O.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a 0, and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
must be O.

If no integer exception occurs, CBIT is reset to 0. At the end of the
instruction, LINK contains the borrow bit. The condition codes reflect
the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be 0O or indeterminate
results occur.

2. This instruction executes in double precision mode only.

3. To negate a 31-bit integer, subtract it from O.

B> DST address
Double Store
IX010011000000CB\?2 (R mode long)
[DISPLACEMENT\16]

I X010 O DISPLACEMENT\10 (S mode; R mode short)
Calculates an effective address, FA. Stores the contents of A at the
location specified by EA, and the contents of B at the location
specified by EA+l1. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This instruction executes only in double precision mode.

2-39 Second Edition

INSTRUCTION SETS GUIDE

P> DVL address
Divide Long
IX111111000Y11B\2 (Vmode long)
DISPLACEMENT\16

Calculates an effective address, EA. Divides the 64-bit contents of L
and E by the 32-bit contents of the location specified by EA. Stores
the quotient in L and the remainder in E. An overflow or divide by O
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. The wvalues of LINK and the condition codes are
indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This note applies only to the 150/250, 450/550/250-II, I480-IT,
and 2250 processors. When the value ‘040000 ‘000000 ‘000000
‘000000 is divided by ‘100000 ‘000000, the quotient overflows
the hardware (and sets the CBIT to 1) in the early stage of the
algorithm even though the final result is not in overflow
(100000 ‘000000).

Second Edition 2-40

J

D)

D

9

S, R, AND V MODE

P E16S
Enter 16S Mode
0O000000000001001 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

p E3RI
Enter 321 Mode
0000001000001000 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 32I address calculations may be used to
form effective addresses. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

E32R
Enter 32R Mode
0000001000001011 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 011. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P E32S
Enter 325 Mode
0000000000001011 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 0O01. Subsequent S mode instructions
may now be interpreted, and 32S address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P E64R
Enter 64R Mode
0O000O00100000100212 (S, R, V mode form)

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may be used to
form effective addresses. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

24l Second Edition

INSTRUCTION SETS GUILDE

P Es4V
Enter 64V Mode
0000000000001 000 (S, R, Vmode form)

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

P> EAA address
Effective Address to A
IX000111000001CB\2 (R mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into A. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EAFA far,address
Effective Address to FAR
OOOO0OO0O0O101100FARO000 (V mode form)
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR for direct access;
indirection uses the bit field in the indirect pointer (if any).
lLeaves the values of CBIT, LINK, and the condition codes unchanged.

Figure 2-3 shows the format of the EA loaded into the specified FAR.

1 16 17 32 33 36

| RING, SEG | WORD # | BIT # |

EA Format for EAFA
Figure 2-3

P> EAL address
Effective Address to L
IX000111000Y01BR2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into L. ILeaves the
velues of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-42

J J

J

)

S, R, AND V MCDE

P> EAIB address
Effective Address to IB
IX101111000Y10BEBR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, FA, and loads it into IB. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EAXB address
Effective Address to XB
IX101011000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into XB. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P EIO address
Execute I/0
I0O110011000Y01ER\2 (Vmnode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Executes bits 17 to 32 of EA as
if the bits were an extended PIO instruction. If execution is
sucoessful, the instruction sets the condition codes as follows:

18

Meaning
0 A) Successful INA, OTA, or SKS instruction
NE Unsuccessful INA, OTA, or SKS; all OCP

leaves the values of LINK and CBIT unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

p ENB
Enable Interrupts
0000000O100000001 (S, R, Vmode form)

Enables interrupts by setting bit 1 of the modals to 1. Interrupts

remain inhibited for the next instruction. Ieawves the values of CRBIT,
LINK, and the condition codes unchanged.

243 Secord Edition

INSTRUCTION SETS GUIDE

Note

ENB is a restricted instruction.

P> ENBL
Enable Interrupts (Local)
0O000000100000001 (8, R, Vmode form)

This 850 instruction performs the same actions as ENB except that it is

performed specifically for the local processor. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

ENBL is a restricted instruction.

P ENBM
Enable Interrupts (Mutual)
O000000100000000 (S, R, Vmode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

P> ENBP
Enable Interrupts (Process) ‘
0000000100000010 (S, R, Vmode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

Second Edition 244

J

D

D

S, R, AND V MOLE

P> ERA address
Exclusive CR to A
IX010111000Y00BR\2 (Vmode long)
DISPLACEMENT\16

IX010111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X010 1DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Exclusively CRs the contents of
the location specified by EA and the contents of A. Stores the results
in A. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

P> ERL address
Exclusive Or to L
IX010111000Y11BEBR\2 (V mode long)
DISPLACEMENT\ 16

Calculates an effective address, EA. Exclusively ORs the contents of L
with the contents of the 32-bit location specified by EA. Stores the
results in L. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

2-45 Second Edition

INSTRUCTION SETS GUIDE

P> FAD address
Floating Point Add
IX011011000Y01BR\2 (V mode long)
DISPLACEMENT\ 16

IX011011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the location
specified by EA to the contents of the FAC. (See Chapter 6 of the
System Architecture Reference Guide.) Stores the result in the FAC and
normalizes it if necessary. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p FCIQ
Floating Point Convert Double to Quad
1100000101111001 (V mode form)

Clears FACl1 to 0. Ieaves the values of CBIT, LINK, and the condition
codes unchanged.

Note
If FCDQ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

> rov
Floating Point Complement
1100000101011000 (R, Vmode form)

Forms the two’s complement of the FAC mantissa and normalizes the
result if necessary. (See Chapter 6 of the System Architecture
Reference Guide.) Stores the result in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The wvalues of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 246

J

J

J

)

S, R, AND V MXE

P> FCS address
Floating Point Compare and Skip
IX100111000Y01BR\2 (Vmode long)
DISPLACEMENT\ 16

IX100111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. In rounding mode, the instruction
rourds the contents of DAC, then compares the rounded value to the
contents of the memory location specified by EA. In normal mode, no
rounding occurs before the compare. (See Chapter 6 of the System
Architecture Reference Guide for more information.) The compare
results in a skip as follows:

Condition Skip
FAC contents > EA contents. No skip.
FAC contents = EA contents. Skip 16 bits (one halfword).
FAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.

On some processors, FCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,

resulting in a proper comparison.

p> FDEL
Floating Point Convert Single to Double
1100000000001110 (V mode form)

Converts the single precision floating-point number in the floating
accumilator to a double precision floating-point number by loading
zeros into bits 33 to 48 of the floating accumulator. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

247 Second Edition

INSTRUCTION SETS GUITE

P> FDV address
Floating Point Divide
IX111111000Y01BEB\2 (Vmode long)
DISPLACEMENT\ 16

IX111111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the FAC
by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. A divide by O or an overflow
causes a floating-point exception. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Referemce Guide for more
information.

Note

The location specified by EA must contain a normalized
floating-point number. An unnormalized divisor can cause an
€rror.

P> FID address
Floating Point Load
IX001011000Y01EBR\2 (Vmnode long)
DISPLACEMENT\ 16

IX001011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates a 32-bit effective address, EA. Loads the 32-bit contents
in the location specified by EA into the FAC without normalizing. (See
Chapter 6 of the System Architecture Reference Guide.) Leaves the
values of LINK, CBIT, and the condition codes unchanged.

> FLOT
Convert Integer to Floating Point
1100000101101000 (R mode form)

Converts the 31-bit integer contained in A and B to a normalized
floating-point number and stores +the result in the floating
accumulator. The values of CBIT, LINK, and the condition codes are
indeterminate.

Second Edition 2-48

J

S, R, AND V MODE

P FLTA
Convert Integer to Floating Point
1100000101011010 (Vmode form)

Converts the 16-bit integer in A to a floating-point number and stores
the result in the floating accumulator. The values of CBIT, LINK, and
the condition codes are indeterminate.

p FLIL
Convert Long Integer to Floating Point
1100000101011101 (Vmode form)

Converts the 32-bit integer in L to a floating-point number and stores
the result in the floating accurmulator. The values of CBIT, LINK, and
the condition codes are indeterminate.

P> FIX address
Floating Load Index
I0110111000Y01EB\2 (Vmode long)
DISPLACEMENT\ 16

I0110111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Ioads the index register, X, with
two times the 16-bit contents of the location specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

FIX cannot do indexing. See Appendix B for more information.

P FMP address
Floating Point Multiply
IX111011000Y01BR\2 (V mode long)
DISPLACEMENT\ 16

IX111011000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
FAC by the contents of the location specified by EA. (See Chapter 6 of
the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

249 Second Edition

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the FMP instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

B> FRN
Floating Point Round
1100000101011100 (R, Vmode form)

This instruction operates on and stores all results in the floating
accumilator.

For the 2350 to the 9955 II, the following actions occur. If bits 1 to
48 contain O, then bits 49 to 64 are cleared to 0. If bits 24 and 25
both contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to
0, and the result is normalized. If bit 25 contains 1 and bits 28 to
48 are not equal to O, then 1 is added to bit 24, bits 25 to 48 are
cleared, and the result is normalized.

For the earlier systems listed in "About This Book", the following
actions occur. If bits 1 to 48 contain O, then bits 49 to 64 are
cleared to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are
cleared to 0, and the result is normalized.

For all systems, if no floating point exception occurs, sets CBIT to O.
The values of LINK and the condition codes are indeterminate.

If a floating point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> FRNM
FLoating Point Round Towards Negative Infinity
0100000011010000 (V mode form)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. 1In any other case, the
instruction clears bits 25 to 48 to O, normalizes the result, and
places it in DAC. If no floating-point exception occurs, the
instruction resets CBIT to 0. The values of LINK and the condition
codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit ¥ contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
(See Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-50

J

J

3 3

3

S, R, AND V MOCE

P> FRNP
Floating Point Round Towards Positive Infinity
0100000011000011 (Vmode form)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 24 of DAC, clears bits
25 to 48 to O, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FRNZ
Floating Point Round Towards Zero
0100000011010001 (Vmode form)

Converts the 64-bit wvalue in DAC to a single precision floating-point
number. If DAC contains O, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 26 to 48 to zero,
normalizes the result, and places it in DAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-51 Second Edition

INSTRUCTION SETS GUILE

P> FSB address
Floating Point Subtract
IX011111000Y01BR\2 (Vmode long)
DISPLACEMENT\ 16

IX011111000001CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit contents of
the locations specified by EA from the contents of the FAC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The wvalues of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the FSB instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FSGT
Floating Point Skip on F Greater Than O
1100000101001101 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are greater than 0. Ieaves the wvalue of LINK and CBIT
unchanged. The values of the condition codes are indeterminate. FSGT
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

p> FSLE
Floating Point Skip on F Less Than or Equal to O
1100000101001100 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumilator are less than or equal to 0. Ieaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

Second Edition 2-52

J

3

S, R, AND V MODE

p FSMI
Floating Point Skip on F Minus
1100000101001010 (R, Vmode form)

Skips the next 16-bit halfword if the contemnts of the floating
accumilator are less than 0. Ieaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate. FSMI
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero amd
less tl):an zero. (See Chapter 6 in the System Architecture Reference
Guide.

p FSNZ
Floating Point Skip on F Not O
1100000101001001 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumlator are less than or equal to 0. Ieaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSNZ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less tl):an zero. (See Chapter 6 in the System Architecture Reference
Guide.

p FSPL
Floating Point Skip on FAC Plus
1100000101001011 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are greater than or equal to 0. Leaves the values of LINK
and CBIT unchanged. The values of the condition codes are
indeterminate. FSPL works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

P> FST address
Floating Point Store
IX010011000Y01EBR\2 (V mode long)
DISPLACEMENT\ 16

IX010011000001CB\?2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the FAC
into the 32-bit location specified by EA. (See Chapter 6 of the

Architecture Reference Guide.) If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store

2-53 Second Edition

INSTRUCTION SETS GUIDE

exception) occurs. If no floating-point exception occurs, the
instruction resets CBIT to O. At the end of the instruction, the
values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

This instruction does not normalize the result before loading it into
the specified memory location unless rounding is enabled.

P> FSZE
Floating Point Skip on F Equal to O
1100000101001000 (R, Vmode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator equal 0. Ieaves the values of LINK and CBIT unchanged.
The values of the condition codes are indeterminate. FSZE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to zero and less than
zero. (See Chapter 6 in the System Architecture Reference Guide.)

Second Edition 2-54

)

J

J

9

A

S, R, AND V MODE

> mrT
Halt
0O000000000000000 (S, R, Vmode form)

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stoppad. The supervisor terminal indicates a halt. Leaves the values
of CBIT, LTNK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPIR. The contents of RSAVPIR can be accessed by
an LIIR/STIR instruction with address '40037. The registers are saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 2-3.

Table 2-3
Order of Saved Registers after HLT

6350, | 2350 to 2755, |
9750 to 9955 II | 9850 and 9655 | Earlier Systems*

User Reg Set 3
User Reg Set 4
User Reg Set 1

| User Reg Set 1
| User Reg Set 2
| User Reg Set 3
User Reg Set 2 | User Reg Set 4
Microcode Reg File, | User Reg Set 5
Set 2 | User Reg Set 6

|

I

[

|

|

|

|

| User Reg Set 2
|
|
[
[
|
Indirect Reg Set User Reg Set 7 |
I
I
I
|
I
I

User Reg Set 1
IMx Reg File
Microcode Reg File

Microcode Reg File, | User Reg Set 8

I
|
|
|
I
!
|
I
|
I
I
|
I
|
|
I

Set 1 IMx Reg File
IMx Reg File Microcode Reg File,
Set 1
Microcode Reg File,
Set 2

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

2-55 Second Edition

INSTRUCTION SETS GUIDE

p 1aB
Interchange A and B
0000000010000001 (S, R, Vmode form)

Interchanges the contents of A and B. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

P 1ICcA
Interchange Bytes of A Register
1100001011100000 (S, R, Vmode form)

Interchanges the bytes of A. Ieaves the values of CBIT, LINK, ard the
condition codes unchanged.

p ICcL
Interchange Bytes and Clear Left
1100001001100000 (S, R, Vmode form)

Interchanges the bytes of A, then clears the left byte to 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P ICR
Interchange Bytes and Clear Right
1100001010100000. (8, R, Vmode form)

Interchanges the bytes of A, then clears the right byte to 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> E
Interchange L and E
0

1100001100001100 (S, R, Vmode form)

Interchanges the values of E and L. Ieaves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition 2-56

J

J

J

B

)

)

S, R, AND V MODE

P IMA address
Interchange Memory and A
IX101111000Y00ER\2 (V mode long)
DISPLACEMENT\ 16

IX101111000000¢CB\2 (R mode long)
[DISPLACEMENT\16]

I X101 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Interchanges the contents of A
and the contents of the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

The IMA instruction is nonatomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STAC instruction instead.

P INA function,device
Input to A
10110 O FUNCTION\4 DEVICE\6
Valid for modes S, R

Loads data from the specified device into A. Ieaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0000001010001111 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys fram
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
interrupts. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

2-57 Second Edition

INSTRUCTION SETS GUIDE

Note
INBC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INBN address
Interrupt Notify Beginning
0000001010001101 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to clear the currently
active interrupt. The wvalues of CBIT, LINK, and the condition codes
are indeterminate. A process exchange will occur if the notified
process is of a higher priority than the interrupted process. See
Chapter 9 of the System Architecture Reference Guide for more
information.

Note
This is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INEC address
Interrupt Notify End, Clear Active Interrupt
0000001010001110 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, Dbits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue. Issues a
CAT pulse to clear the currently active interrupt, and enables
interrupts. The wvalues of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Second Edition 2-58

) J

J

J

A

)

S, R, AND V MODE

Note
INEC is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

P> INEN address
Interrupt Notify End
0000001010001100 (Vmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 18 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to clear the currently active
interrupt. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Note
This is a restricted instruction.
This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

p DH
Inhibit Interrupts
0O000001000000001 (S, R, Vmode form)

Inhibits interrupts by setting bit 1 of the modals to 0. Inhibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that are made over the I/0O
bus. This instruction takes effect immediately. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

2-59 Second Edition

INSTRUCTION SETS GUIDE

p DL
Inhibit Interrupts (Local)
0000001000000001 (S, R, Vmode form)

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, LINK,and the condition codes unchanged.

Note

This is a restricted instruction.

P> M
Inhibit Interrupts (Mutual)
0000001000000000 (S, R, Vmode form)

For the 850, a processor checks the aveilability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

p INHP
Inhibit Interrupts (Process)
0000001000000010 (S, R, Vmode form)

For the 850, a processor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the

other processor and then sets the lock and inhibits interrupts. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

Second Edition 2-60

VY

J

r
r

)

b

S, R, AND V MODE

p K
Input Keys
0000000000100011 (8, R mode form)

loads the contents of the S and R mode keys into A. Reads the
low-order 8 bits of the floating exponent (address trap location 6)
register along with the high-order 8 bits of the keys register. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

p InNT
Convert Floating Point to Integer
1100000101101100 (S, R mode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 31-bit integer and stores the result in A and
bits 2 to 16 of B. Bit 1 of B (bit 17 of the result) is forced to O.
Ignores the fractional portion of the floating-point number. Overflow
occurs if the value in the floating accumulator is less than —2**30 or
greater than (2**30)-1. If overflow occurs, a floating-point exception
occurs. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p INTA
Convert Floating Point to Integer
1100000101011001 (Vmode form)

Converts the double precision number contained in the floating
accumulator to a 16-bit integer and stores the result in A. Ignores
the fractional portion of the floating-point number. For example, 4.5
is converted to 4 and +4.5 is converted to +4. Overflow occurs if the
value in the floating accumulator is less than -2**15 or greater than
(2**15)-1. If overflow occurs, a floating-point exception occurs. If
no floating-point exception occurs, CBIT is reset to O.

At the end of this instruction, the B register contents are
indeterminate. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

261 Second Edition

INSTRUCTION SETS GUIDE

p INTL
Convert Floating Point to Long Integer
1100000101011011 (Vmode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 32-bit integer and stores the result in L.
Ignores the fractional portion of the floating-point number contained
in the floating accumulator. For example, 4.5 is converted to 4 and
+4.5 is converted to +4. Overflow occurs if the floating-point number
is less than -2**31 or greater than (2**31)-1. If overflow occurs, &
floating-point exception occurs. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P> IRS address
Increment and Replace Memory
IX101011000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX101011000000CB\2 (R mode long)
[DISPLAGEMENT\16]

I X 1010 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the contents of the
location specified by EA, adds 1 (a 16-bit increment), and stores the
result back in the location specified by EA. Skips the next location
if the incremented value is 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

» IRIC
Interrupt Return, Clear Active Interrupt
0000000110000011 (V mode form)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS. Issues a CAI pulse to clear the currently
active interrupt, and enables interrupts.

Note

This is a restricted instruction.

Second Edition 2-62

J

J

N

)

S, R, AND V MODE

IRTN
Interrupt Return
0000000110000001 (V mode form)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAT pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

P> xx
Increment and Replace X
1100000001001100 (S, R, Vmode form)
Increments the contents of X by 1 and stores the result in X. Skips
the next 16-bit halfword if the incremented value is 0. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P ITLB
Invalidate STLB Entry
0000000110001101 (V mode form)

Invalidates the STLB entry that corresponds to the virtual address
contained in L. The values of CBIT, LINK, and the condition codes are
indeterminate. You must execute this instruction whenever you change
the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you wusually have to invalidate the
entire STLB by issuing the instruction PTLB. A O in the segment number
portion of L invalidates the IOTLB entry corresponding to the address

specified by L.

Note

This is a restricted instruction.

263 Second Edition

INSTRUCTION SETS GUIDE

P JIIX address
Jump and Decrement X
I0110111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts 1 from the contents of
the index register, X. If the decremented value does not equal O, the
instruction loads EA into the program counter. If the decremented
value is equal to O, execution continues with the next sequential
instruction. leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing. See Appendix B for more
information.

P> JIX address
Increment X and Jump if Not Equal to O
I0110111000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds 1 to the contents of the
index register, X. If the incremented value does not equal O, the
instruction loads EA into the program counter. If the incremented
value is equal to 0, execution continues with the next sequential
instruction. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing.

P JMP address
Jump

IX000111000Y00BR\2 (Vmode long)

DISPLACEMENT\ 16

IX000111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X 00 O 1 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. ILoads EA into the program

counter. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Second Edition 2-64

J

A

)

S, R, AND V MODE

P JST address
Jump and Store
IX100011000Y00BRN\2 (Vmode long)
DISPLACEMENT\ 16

IX100011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X1 0 0 O DISPLACEMENT\10 (S mode: R, V mode short)

Calculates an effective address, EA. Stores the contents of the
program counter in the location specified by EA. Execution continues
at the location EA+1l.

The JST instruction truncates the return address according to the
addressing mode before storing it. The high-order bits of the memory
location are not affected by the store. This allows you to preset the
I or X bits in some modes as follows:

Mode Allowed Presets
16S I, X
32S, 32R I
64R, 64V none
Note

JST cannot be used in shared code. In Ring O, JST inhibits
interrupts during execution of the next instruction.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

P JISX address
Jump and Save in X
I1110111000Y11BR\2 (V mode long)
DISPLACEMENT\ 16

I1110111000011CB\?2 (R mode long)
[DISPLACEMENT\16 1}

Calculates an effective address, EA. Increments the contents of the
program counter by 1 and loads the result into X. Ioads EA into the
program counter. For the 750 and 850, if the value of CB is 2 or 3,
then the next 16 bits are skipped. Ieaves the values of CBIT, LINK,
and the condition codes unchanged.

2-65 Second Edition

INSTRUCTION SETS GUIDE

Note
JSX cannot do indexing. See Appendix B for more information.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

P> JSXB address
Jump and Save in XB
IX110011000%Y10BR\2 (V mode long)
DISPLACEMENT\ 16

IX110011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. ILoads the contents of the program
counter into XB. Ioads EA into the program counter. ILeaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine calls outside the current
segment as well as within.

P> JSY address
Jump and Save in Y
IX110011000Y00BR\ (V mode long)
DISPLACEMENT\ 16

I X110 O DISPLACEMENT\16 (V mode short)
Calculates an effective address, FA. lLoads Y with the location number

of the program counter. Loads EA into the program counter. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

J

Second Edition 2-66

J

J

S, R, AND V MODE

> 1R
Ioad A on Cordition Code EQ

1100001101000011 (Vmode form)

If the condition codes reflect an equal to condition, the instruction
loads A with a 1. If the condition codes reflect a not equal
condition, the instruction loads A with a O. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

P ICGE
ILoad A on Condition Code GE
1100001101000100 (V mode form)

If the condition codes reflect a greater than or equal to condition,
the instruction loads A with a 1. If the condition codes reflect a
less than condition, the instruction loads A with a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

p 1cGr
Ioad A on Condition Code GT
1100001101000101 (V mode form)

If the condition codes reflect a greater than condition, the
instruction loads with a 1. If the condition codes reflect a less than
or equal to condition, the instruction loads A with a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

}ICLE
Ioad A on Condition Code LE
1100001101000001 (V mode form)

If the condition codes reflect a less than or equal to condition, the
instruction loads A with a 1. If the condition codes reflect a greater
than condition, the instruction loads A with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

> 1ciT
Load A on Condition Code LT
1100001101000000 (V mode form)

If the condition codes reflect a less than condition, the instruction
loads A with a 1. If the condition codes reflect a greater than or
equal to condition, the instruction loads A with a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

2-67 Second Edition

INSTRUCTION SETS GUIDE

P ICNE
Load A on Condition Code NE
1100001101000010 (V mode form)

If the condition codes reflect a not equal condition, the instruction
loads A with a 1. If the condition codes reflect an equal condition,
the instruction loads A with a 0. Ileaves the values of CBIT, LINK, and
the condition codes unchanged.

P IDA address
Load A
IX001011000Y0O0E\2 (Vmode long)
DISPLACEMENT\ 16

IX001011000000CB=2 (R mode long)
[DISPLACEMENT\16]

I X 00 10 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. ILoads the contents of the
location specified by EA into A. Ieaves the values of CBIT, LINK, and
the condition codes unchanged.

p IIC fir
ILoad Character
O0OOO0O0O0101100FIRO010 (Vmode form)

If the contents of the specified FIR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of A. When the FAR's bit field contains O,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of A.
Updates the contents of the appropriate FAR by 8 so that they point to
the next character. Decrements the contents of the specified FIR by 1.
Sets the condition codes to NE.

If the contents of the specified FIR are O, the instruction sets the
condition codes to ER.

The instruction leaves the values of CBIT and LINK unchanged.
Note

This instruction uses FARO when FIRO is specified, and FARL
when FIR1 is specified.

Second Edition 2-68

J) J

J

M)

3

S, R, AND V MODE

P> LIL address
Load Long
IX001011000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates a long (32-bit) effective address, EA. ILoads the 32-bit
contents of the location specified by EA into L. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P IIIR address
Load L From Addressed Register
IX010111000Y01BR\2 (Vmode form)
DISPLACEMENT\16

Calculates a 32-bit (1-word) effective address, EA. Loads L with the
contents of the register file location specified by the offset portion
of EA. Bit 2 and bit 12 of the offset portion of EA determine the
actions of this instruction:

Bit 2 Bit 12 Action

1* - Ignore bit 1 and bits 3 to 9. The offset
portion of EA specifies an absolute register
number from O to '377.

o* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers '20 to ‘37 in the
current register set.

0] 0 Bits 13 to 16 of the offset portion of EA
specify one of the registers O to ‘17 in the
current register set.

*This is a restricted instruction.
leaves the values of CBIT and LINK unchanged; the values of the

cordition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information on register sets.

2-69 Second Edition

INSTRUCTION SETS GUIDE

P 1IX address
Load X
I1110111000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

I1110111000000GB\2 (R mode long)
[DISPLACEMENT\16]

I 1110 1 DISPLACEMENT\10 (S, R, V mode short form)

Calculates an effective address, FA. Loads X, the index register, with
the contents of the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged. For 750 and 850
processors in R mode only, if CB contains 2 or 3, the first 16 bits of
the néext instruction will be skipped.

Note

IDX cannot specify indexing, though an address calculated in
the indirect chain may do so in 16S mode. See Appendix B for
more information. :

P LDY address
Load Y

I1110111000Y01BR\2 (Vmode form)
DISPALCEMENT\ 16

Calculates an effective address, FA. Loads Y with the contents of the

location specified by EA. Ieaves the values of CBIT, LINK, and the
cordition codes unchanged.

Note

IDY cannot do indexing. See Appendix B for more information.

> LEQ

Load A on A Equal to O
1100000100001011 (S, R, Vmode form)

If the contents of A are equal to O, the instruction loads A with a 1.
If the contents of A are not equal to O, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

Second Edition 270

J)

J

DI

3

S, R, AND V MOCE

> IF
Load False
1100000100001110 (S, R, Vmode form)

Iloads A with a 0. ILeaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeterminate.

> LFEQ
ILoad A on F Equal to O

1100001001001011 (Vmode form)

If the contents of the floating accumlator are equal to O, the
instruction loads A with a 1. If the F contents are not equal to O,
the instruction loads A with a 0. ILeaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFBEQ works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

p IFGE
Load A on Floating Accumulator Greater Than or Equal to O
1100001001001100 (Vmode form)

If the contents of the floating accumilator are greater than or equal
to 0, the instruction loads A with a 1. If the F contents are less
than O, the instruction 1loads A with a O. Leawves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fractiom
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

» IFGT
Load A on Floating Accumulator Greater Than O
1100001001001101 (Vmode form)

If the contents of the floating accumulator are greater than O, the
instruction loads A with a 1. If the F contents are less than or equal
to 0, the instruction loads A with a 0. Ieaves the values of LINK and
CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

2-71. Secord Edition

INSTRUCTION SETS GUIDE

P IFIE
Load A on Floating Accumulator ILess Than or Equal to O
1100001001001001 (Vmode form)

If the contents of the floating accumilator are less than or equal to
O, the instruction loads A with a 1. If the F contents are greater
than O, the instruction loads A with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFLE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

p LFLI flr,data
Load FIR Immediate
O0O0C000101100FIRO11 (Vmode form)
INTEGER\ 16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FIR. Clears the
upper bits of the FIR. Ieaves the values of CBIT, LINK, the condition
codes, and the associated FAR unchanged.

p LFLT
Load A on Floating Accumulator Less Than O
1100001001001000 (V mode form)

If the contents of the floating accumlator are less than O, the
instruction loads A with a 1. If the F contents are greater than or
equal to O, the instruction loads A with a 0. Ieaves the values of
LTNK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFLT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

P> LFNE
Load A on Floating Accumulator Not Equal to O
1100001001001010 (V mode form)

If the contents of the floating accumulator are not equal to O, the
instruction loads A with a 1. If the F contents are equal to O, the
instruction loads A with a 0. ILeaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFNE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

Second Edition 2-72

J

)

)

S, R, AND V XOIE

P IGE
Load A on Greater Than or Equal to O
1100000100001100 (S, R, V mode form)

If the contents of A are greater than or equal to 0O, the instruction
loads A with a 1. If the contents of A are less than O, the
instruction loads A with a 0. ILeaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) This instruction has the same opcode as LIGE.

bLG‘I'
Load A on Greater Than O
1100000100001101 (S, R, Vmode form)

If the A contents are greater than O, the instruction loads A with 1.
If the A contents are less than or equal to O, the instruction loads A
with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P> LIOT address
Load IOTLB
0O000000000100100 (V mode form)
AP\32

Ioads a specified IOTIB entry. The following list shows the contents
of the LIOT entry and the origin of the information.

Origin Description
AP in LIOT Virtual address in I/0 segment (calculated from EA).

Page table Physical address (translation of virtual address)
obtained from I/O segment. If the fault bit is set
to 1, a page fault occurs.

L register Target virtual address containing the segment number
and page number to be used by procedures accessing
this information. This is used to help invalidate
the proper locations in the cache. The segment

number and low-order 10 bits (offset number in the
page) are ignored.

The values of CBIT, LINK, and the condition codes are indeterminate.

Note

LIOT is a restricted instruction.

2-73 Second Edition

INSTRUCTION SETS GUITE

P LE '
Load on A Less Than or Equal to O
1100000100001001 (S, R, Vmode form)

If the contents of A are less than or equal to O, the instruction loads
A with 1. TIf the A contents are greater than O, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

p LIEQ
Load A on L Equal to O

1100001101001011 (V mode form)

If the contents of L are equal to O, the instruction loads A with a 1.
If the contents of L are not equal to O, the instruction loads A with a
0. Ieaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

p LIGE
Load A on L Greater Than or Equal to O
1100000100001100 (V mode form)

If the contents of L are greater than or equal to 0, the instruction
loads A with a 1. If the contents of L are less than O, the
instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes contain the result of the comparison.
(See Apperdix A.) This instruction has the same op code as IGE.

)LIGT
Ioad A on L Greater Than O
1100001101001101 (Vmode form)

If the L contents are greater than O, the instruction loads A with 1.
If the L contents are less than or equal to O, the instruction loads A
with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

Second Edition 2-74

J

J

D

S, R, AND V MODE

p LiLn
Long Left Logical
0100001000N6 (8, R, Vmode form)

Shifts the contents of A and B to the left, bringing zeros into bit 16
of B. Shifts bits out of bit 1 of B into bit 16 of A. CBIT and LINK
contain the value of last bit shifted out of A; the values of all
other bits shifted out of A are lost. Ieaves the values of the
condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p LLIE
Load A on L Less Than or Equal to O
1100001101001001 (V mode form)

If the contents of L are less than or equal to O, the instruction loads
A with 1. If the L contents are greater than O, the instruction loads
A with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

p LILT
Icad Aon L Iess Than O
1100000100001000 (V mode form)

If the contents of L are less than O, the instruction loads A with 1.
If the L contents are greater than or equal to O, the instruction loads
A with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLT.

p LINE
Load A on L Not Equal to O
1100001101001010 (V mode form)

If the contents of L are not equal to O, the instruction loads A with a
1. If the contents of L are equal to O, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

2-75 Second Edition

INSTRUCTION SETS GUIDE

p LIRn
Long ILeft Rotate
0100001010N6 (S, R, Vmode form)

Shifts the contents of A and B left, rotating bit 1 of A into bit 16 of
B. Bit 1 of B shifts into bit 16 of A. CBIT and LINK contain a copy
of the last bit rotated into bit 16 of B. Ieaves the wvalues of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p LiSn
Long Left Shift
0100001001N6 (Vmode form)

Shifts the 32-bit integer in L left arithmetically, bringing zeros into
bit 32. Bits shifted out of bit 1 are lost. If bit 1 changes state,
it is interpreted as an overflow and causes an integer exception. If
no integer exception occurs, CBIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

p LiSn
Iong Left Shift
0100001001N6 (8, R mode form)

Shifts the 31-bit integer contained in A and B left arithmetically,
bringing zeros into bit 16 of B. Bit 1 of B does not take part in the
shift; bit 2 of B is shifted into bit 16 of A. Bits shifted out of
bit 1 of A are lost. If bit 1 of A changes state, it is interpreted as
an overflow and causes an integer exception. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Second Edition 2-76

J J

J

J

3

S, R, AND V MODE

p LiT

Ioad on A Iess Than O
1100000100001000 (S, R, Vmode form)

If the contents of A are less than O, the instruction loads A with 1.
If the A contents are greater than or equal to O, the instruction loads
A with 0. Ieaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLLT.

p INE
Load on A Not Equal to O
1100000100001010 (S, R, Vmode form)

If the contents of A are not equal to O, the instruction loads A with a
1. If the contents of A are equal to O, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

p LPID
Load Process ID
0000001100011 11 (V mode form)

Loads the process ID from bits 1 to 10 of A into RPID (the process ID
register). This contains the 10 most significant bits of the user’s
address space. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the process ID field of an STLB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STIB data is still wvalid (STILB hit) or not
(STIB miss). This register is for internal machine operation, and
should not normally be modified by the user.

Note

This is a restricted instruction.

P> LPSW address
Load PSW
0O000000111001001 (V mode form)
AP\32

Changes the status of the processor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruction.

2-77 Second Edition

INSTRUCTION SETS GUIDE

Addresses a 64-bit (4-halfword) block at the specified location. The
block has the following.

Offset in Block Contents
1l1to?2 New program counter (ring, segment, offset
numbers)
3 New keys
4 New modals

LPSW loads the program counter and keys of the currently i
process with the contents of the first three offsets (bits 1 to 48),
then loads the processor modals with the contents of the fourth offset
(bits 49 to 64).

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current process. This bit is altered
by software only during a cold or warm start. If bit 15 is O, the
currently executing process will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the
processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, note that execution resumes at the point defined by
the value of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

This instruction loads the 64 bits (four halfwords) of the register set
that the STIR instruction cannot correctly load. STLR does not update
the separate hardware registers the processor uses to maintain
duplicate information for optimization.

Never use this instruction to change bits 9 to 11 of the modals. These
bits specify the current user register set. This means that if you do
not know the current value of these bits, you must do the following
each time you want to execute an LPSVW.

1. Inhibit interrupts.

2. Read the current values of modal bits 9 to 11 (use LDIR).

3. Mask the old values of the modal bits into the new information.

4. Ioad the new information into the modals with an LPSW.
For the two common uses of LPSW, you do not have to perform this

sequence, since the values of modal bits 9 to 11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,

Second Edition 2-78

y

J

J

)

3

S, R, AND V MODE

bits 9 to 11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

Also note that you should not use LPSW to set bits 16 (the save done
bit) or 15 (the in-dispatcher bit) of the keys, unless you are merely
loading status following a fault, check, or interrupt. When issuing
LPSW after a Master Clear, make sure you load zeros into both of these
bits.

Note

LPSW is a restricted instruction. This instruction inhibits
interrupts during execution of the next instruction.

p> IRL n
Long Right Logical
0100000000N6 (S, R, Vmode form)

Shifts the contents of A and B right, bringing zeros into bit 1 of A.
Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B are lost. lLeaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P IRR n
Long Right Rotate
0100000010NM6 (S, R, Vmode form)

Shifts the contents of A and B right, rotating bit 16 of B into bit 1
of A. Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain a
copy of the last bit rotated from B to A. Ieaves the values of the
condition codes unchanged.

N contains the two’'s complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

P IRSn

long Right Shift
0100000001N8 (Vmode form)

Shifts the 32-bit integer contained in L right arithmetically. Shifts

copies of bit 1, the sign bit, into each of the vacated bits. CBIT and
LINK contain the value of the last bit shifted out of L; the values of

2-79 Second Edition

INSTRUCTION SETS GUIDE

all other bits shifted out are 1lost. Iecaves the wvalues of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the instruction performs 64 shifts.

p IRSn
Long Right Shift
0100000001N868 (S, R mode form)

Shifts right arithmetically the 31-bit integer contained in A and B,
leaving bit 1 of A unaffected. Bit 1 of B does not take part in the
shift; bit 16 of A is shifted into bit 2 of B. Shifts copies of bit 1
of A into each of the vacated bits. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B are lost. ILeaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains O, the imstruction performs 64 shifts.

p T
Load True
1100000100001111 (S, R, Vmode form)

Loads A with a 1. Ieaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeterminate.

Second Edition 2-80

J

J

J

)

b

S, R, AND V MCCE

P MPL address
Multiply Long
IX111011000Y11B\ (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, FA. Multiplies the 32-bit integer in
L by the B32-bit integer in the location specified by EA. Stores the
64-bit result in L and E. The 150/250, 450/550/250-II, I450-II, and
2250 processors leave the CBIT and LINK unchanged. The other 50 Series
processors 1reset the CBIT to O amd leave the value of LINK
indeterminate. For all 50 Series processors, the condition codes are
unchanged. MPL cannot cause overflow or generate an integer exception.

P> MPY address
Multiply
IX111011000Y00BR2 (Vmode long)
DISPLACEMENT\ 16

IX 1110 DISPLACEMENT\10 (V mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Stores the
32-bit result in A and B. Resets the CBIT to 0. The value of LINK is
indeterminate. Leaves the values of the condition codes unchanged.

Note

This instruction cannot cause overflow.

P> MPY address
Multiply
IX111011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X111 0 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Loads the
31-bit result in A and B. If the multiplier and multiplicand are both
-(2**15), an integer exception occurs. If no integer exception occurs,
CBIT is reset to 0. The value of LINK is indeterminate. For the 2350
to 9955 II, the condition codes are unchanged. For the earlier
processors listed in “"About This Book", the values of the condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-81 Second Edition

INSTRUCTION SETS GUIDE

P> NFYB address
Notify to Beginning
0000001010001001 (Vmode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses LIFO (last in, first out) queueing. Does not
clear the currently active interrupt. The values of CBIT, LINK, and
the condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> NFYE address
Notify to End
0000001010001000 (V mode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses FIFO (first in, first out) queueing. Does
not clear the currently active interrupt. The values of CBIT, LINK,
and the condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

B> wnoP
No Operation
0O000000000000001 (S, R, Vmode form)

Does nothing. Ieaves the values of CBIT, LINK, and the condition codes
unchanged.

Second Edition 2-82

J

J

3

A

S, R, AND V MOLE

P> OCP function,device
Output Control Pulse
0 01100 FUNCTION\4 DEVICE\6 (S, R mode form)

Sends a control pulse to perform the specified function to the
specified device. This instruction never skips. Ieaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

P> CORA address
Inclusive OR
IX001111000Y10BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Logically ORs the contents of the
location specified by EA and the contents of A and stores the result in
A. Leaves the values of CBIT, LINK, and the condition codes unchanged.

P OTA function,device
Output From A
11110 0 FUNCTION\4 DEVICE\6 (S, R mode form)

Transfers data from A to the specified device. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

p O
Output Keys
0000000100000101 (S, R mode form)

Stores the contents of A in the keys. Loads CBIT, LINK, and the
condition codes as a result of the operation. Loads the low-order 8
bits of the floating exponent (address trap location 6) register with
the low-order 8 bits of A. If this instruction is executed in Ring O,
it inhibits interrupt during execution of the next instruction.

2-83 Second Edition

INSTRUCTION SETS GUIDE

P> PCL address
Procedure Call
IX100011000Y10B\2 (Vmode form)
DISPLACEMENT\ 16

Sets CBIT, LINK, and the condtion codes to the values contained in the
BCB. See Chapter 8 of the System Architecture Reference Guide for a
complete description of this instruction.

Note

When arguments are to be transferred to the called procedure,
this instruction uses X and Y, destroying the previous contents
of these registers. XB is updated if an AP has the S bit = O.
The contents of X, Y, and XB remain unchanged if no arguments
are transferred. The contents of the condition codes, CBIT,
and LTNK are not correctly saved in the ECB along with the rest
of the caller’'s keys.

> r
Position for Integer Divide
0O000000010001001 (S, R mode form)

Moves the contents of bits 2 to 16 of A into bits 2 to 16 of B. Clears
bit 1 of register B to O and extends the sign contained in bit 1 of A
into bits 2 to 16 of A. Ieaves the values of CBIT, LINK, and the
cordition codes unchanged.

PIDA
Position for Integer Divide
0000000001001101 (Vmode form)

Moves the contents of bits 1 to 16 of A into bits 17 to 32 of L.
Extends the sign contained in bit 1 of A into bits 2 to 16 of A.
leaves the values of CBIT, LINK, and the condition codes unchanged.

p prITL
Position for Integer Divide Long
0000000011000101 (Vmode form)

Moves the contents of L into E and extends the sign contained in bit 1

of 1. into bits 2 to 32 of L. lLeaves the values of CBIT, LINK, and the
condition codes unchanged.

Second Edition 2-84

' J

J

3

Y

S, R, AND V MODE

PIM
Position After Multiply
0000000010000101 (S, R mode form)

Moves bits 2 to 16 of B into bits 2 to 16 of A. This converts a 31-bit
integer to a 16-bit integer. Ieaves the values of CBIT, LINK, and the
condition codes wunchanged. Overflow does not cause an integer
exception.

p PIMA
Position After Multiply
0000000000001101 (Vmode form)

Moves bits 17 to 32 of L, into bits 1 to 16 of A. This converts a
32-bit integer to a 16-bit integer. An integer exception occurs if
there is an overflow. (This occurs if bits 1 to 17 of L contain a
value other than all zeros or all ones before the move.) If no integer
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of L in A, PIMA can modify all 32
bits of L. Since A and B overlap L, this swap means that the
contents of B are indeterminate at the end of this instruction.

p pPIML
Position After Integer Multiply Long
0000000011000001 (Vmode form)

Moves the contents of bits 1 to 32 of E into bits 1 to 32 of L. This
converts a 64-bit integer to a 32-bit integer. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-85 Second Edition

INSTRUCTION SETS GUIDE

P PRIN
Procedure Return
0000000110001001 (V mode form)

Deallocates the stack frame created for the executing procedure and
returns to the environment of the procedure that called it.

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. It then restores the
caller's state by loading the caller’s program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets bits 15 to 16 of the keys to O.

Loads the ring number in the program counter with the current ring
number to allow outward returns but prevent inward returns.

PTLB
Purge TLB
0000000000110100 (Vmode form)

L contains the address of a physical page, right justified. Based on
the value of L bit 1, PILB purges either the first 128 locations or a
single location. If L bit 1 contains a 1, the instruction performs a
complete purge. If L bit 1 contains a O, the instruction purges the
page specified by L. Ieaves the values of CBIT, LINK, and the
condition codes indeterminate. See Chapters 1, 4, and 11 of the System
Architecture Reference Guide for more information about the STLB and
IOTLB.

Note
This is a restricted instruction.

On the 750, 850, and 2350 to 9955 II, insert a CRE (Clear E)
instruction before PTLB. Since PTLB uses E as a pointer, the
CRE zeros E before PILB manipulates it. If an interrupt occurs
during PTIB's execution, E points to the location PTLB is
currently purging. PTLB leaves the contents of E in an
undefined state at the end of its execution.

Second Edition 2-86

J

)

S, R, AND V MOCE

P> QFAD address
Quad Precision Floating Add
IX010111000Y10EBR\2 (V mode long)
DISPLACEMENT\ 16
o0oo0oo0O0O0OO00CGOOOOOCO1O0

Calculates an effective address, EA. Adds the 112-bit, quad precision
number contained in the Ilocations specified by EA to the contemts of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result and loads it into QAC. An overflow or underflow
causes a floating-point exception. If no floating-point exception
occurs, the instruction resets CBIT to O. The values of LINK and the
cordition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QFCM
Quad Precision Floating Complement
1100000101111000 (V mode form)

Forms the two’'s complement of the value contained in QAC and normalizes
it if necessary. (See Chapter 6 of the System Architecture Reference
Guide.) Stores the result in QAC. An underflow or overflow causes a
floating-point exception. If no floating-point exception occurs,
resets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFCM is used for any earlier system listed in "About This
Bock", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-87 Second Edition

INSTRUCTION SETS GUIDE

P QFCS address
Quad Precision Floating Point Compare and Skip
IX010111000Y10ER\ (V mode long)
DISPLACEMENT\ 16
oOoooo0O0O00O0OO0OOOO0O110

Calculates an effective address, FA. Compares the contents of QAC (see
Chapter 6 of the System Architecture Reference Guide) to the 112-bit
contents of the location specified by EA and skips as shown below.

Condition Skip
QAC > EA contents. No skip.
QAC = EA contents. Skip 16 bits (one halfword).
QAC < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.
On some processors, QFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note
If QFCS is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFDV address
Quad Precision Floating Point Divide
IX010111000Y10B\2 (Vmode long)
DISPLACEMENT\16
0O000000000000101

Calculates an effective address, EFA. Divides the contents of QAC by
the 112-bit contents of the location specified by EA. Normalizes the
result and stores the whole quotient into QAC. An overflow, underflow,
or divide by O causes a floating-point exception. If there is no
floating-point exception, resets CBIT to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 288

Y)

S, R, AND V MCDE

Note

If QFDV 1is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFID address
Quad Precision Floating Point Load
IX010111000Y10EB\2 (Vmode long)
DISPLACEMENT\ 16
000000000000000CO

Calculates an extended, augmented effective address, EA. Performs one
of the following actions with the wvalue contained in the location
specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, no normalization
occurs. (See Chapter 6 of the System Architecture Reference Guide for
more information.) Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

If QFID is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFLX address
Quad Precision Floating Point Load Index

I0110111000Y11ER\2 (V mode long)
DISPLACEMENT\ 16

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA to the left three times to multiply the
contents by eight. Shifts in zeros on the right and shifts data out on
the left first through bit 2 and then bit 1. ILeaves the wvalues of
CBIT, LINK, and and the condition codes unchanged.

Note

QFLX cannot do indexing. See Appendix B for more information.

If QFIX is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-89 Second Edition

INSTRUCTION SETS GUIDE

P> QFMP address
Quad Precision Floating Point Multiply
IX010111000Y10B\2 (Vmode long)
DISPLACEMENT\ 16
0000000000000 1O00O0

Calculates an effective address, EA. Multiplies the contents of QAC by
the 112-bit contents of the location specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it into QAC. An overflow or underflow causes a
floating-point exception. If there is no floating-point exception, the
instruction resets CBIT to O. The values of LINK and the condition
codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFMP is used for any earlier system listed in “"About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> QFSB address
Quad Precision Floating Point Subtract
IX010111000Y10BEBR\ (V mode long)
DISPLACEMENT\ 16
00000CO0O0O0O0O0O0OO0OO011

Calculates an effective address, EA. Subtracts the contents of the
locations specified by EA from the 112-bit contents of QAC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and loads it into QAC. An overflow or underflow
causes a floating-point exception. If there is no floating-point
exception, the instruction resets CBIT to 0. The values of LINK and
the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Second Edition 2-90

J

3

S, R, AND V MODE

Note

If QFSB is used for any earlier system listed in “About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QFST address

Quad Precision Floating Point Store
IX010111000Y10ER\2 (Vmde long)
DISPLACEMENT\ 16

0O000000000000001

Calculates an effective address, EA. Stores the 128-bit contents of
QAC into the 128 bits of memory specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Leaves the values of CBIT, LINK,

and the condition codes unchanged.

>

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QINQ
Quad to Integer, in Quad Convert
1100000101111010 (V mode form)

Strips the fractional portion of QAC as described in Table 2-4.

2-91 Second Edition

INSTRUCTION SETS GUIDE

Table 24
QY Actions
Exponent Value | Action
‘337 <= Exp No operation.

‘200 < Exp < '337 | If sign >= O, strip fractional part of QAC
for result.

If sign < O and fractional part <> O, strip
fractional part of QAC and increment
integer portion of QAC by 1.

If sign < O and fractional part = O, no

action is done.

‘200 = Exp If sign >= 0, result = O.
If sign < O and bits 2 to 96 = O, result = -1.
If sign < O and bits 2 to 96 <> O, result = O.
‘200 > Exp Result = O.

The QINQ instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to O. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QINQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QIR
Quad to Integer, in Quad Convert Rounded
1100000101111011 (Vmode form)

Strips the fractional portion of QAC as described in Table 2-5.

Second Edition 2-92

y

J

S, R, AND V MODE

Table 2-5
QIQR Actions
| Exponent Value | Action
‘3837 <= Exp No operation.

‘177 < Exp < '337 | If sign >= O, round.*
If sign < O and fractional part <> 0.5,**

round and strip the fractional part
of QAC.

If sign >= 0, result = O.

If sign < O and bits 2 to 96 = O, result = -1.

If sign < O and bits 2 to 98 <> 0, result = 0.

For all cases increment integer part by 1 if
it exists and the most significant bit of

QC = 1.
Exp < ‘177 | The result is O.

!
[
|
[
|
|
[
|
I
I
I
!
I
|

!
I
I
I
[
|
!
|
!
[
I
I
l
I
|
[

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
integer.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = O.

The QIQR instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to O. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QIR is used for any earlier system listed in "About This
Book”, an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-93 Second Edition

INSTRUCTION SETS GUIDE

P> RBQ address
Remove Entry From Bottom
110000111100
AP\32

of
1

Queue
1101 (V mode form)

The address pointer in this instruction points to the QCB for a queue.
The instruction removes the entry from the bottom of the referenced
queue and loads it into A. If the queue is not empty, sets the
condition codes to NE; if empty, resets A to O and sets the condition
codes to BQ. Leaves the values of CBIT and LINK unchanged.

RCB
Reset CBIT to O
1100000010000000 (S, R, Vmode form)

Resets CBIT to O. Ieaves the values of LINK and the condition codes
unchanged.

P RMC
Reset Machine Check Flag to O
0000000000010001 (S, R, Vmode form)

Resets the MCM flag (bits 15 to 16 of the modals) to O. Leaves the
values of CBIT, LINK, and the condition codes unchanged. Inhibits
interrupts during execution of the next instruction.

Note

This is a restricted instruction.

P> RRST address
Restore Registers
0000000111001111 (Vmode form)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-6. Restores the contents of the general, floating,
and XB registers from this save area. Bits 1 to 16 of the save area
are a save mask, whose format appears in Figure 2<4. A mask bit value
of 1 means that the corresponding register had nonzero contents that
have been saved in the save area; a mask bit value of O means that the
corresponding register’s contents were 0. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Second Edition 2-94

J

J

)

3

)

S, R, AND V MODE

Table 2-6
RRST Save Area Format

Offset # | Contents

[|
| |
I 1 | Save mask |
I 2to5 | FR1l (F) f
| 6 to 9 | FRO |
I 10 to 11 | X, GR? !
I 12 t0 13 1| GRS i
I l4tol1l5 | Y, S, GRS |
I 15 to 17 | GR4 |
! 18 to 19 | E, GR3 i
| 20to 21 | A, B, L, GR2 |
i 22 t0 23 | GR1 [
I 24 to0 25 | GRO |
| 26 to 27 | XB [

1 4 5 67Y 8 9 10 11 12 13 14 15 16

|l 0000 | FRLI FROI X I -1 Y I -1 EI LBA I — |

Save Mask Format, RRST and RSAV Instructions
Figure 24

P> RSAV address
Save Registers
0O000000111001101 (Vmode form)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-7. Bits 1 to 16 of the save area are a save mask,
whose format appears in Figure 2-5. This instruction sets the mask bit
of each register as follows: to 1 if the register’s contents have a
nonzero value; to O if a O value. Saves the nonzero contents of the
general, floating, and XB registers in the save area. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

2-95 Second Edition

INSTRUCTION SETS GUIDE

Table 2-7
RSAV Save Area Format

Offset # | Contents

[|
[I
I 1 | Save mask |
I 2to5 | FR1l (F) [
[6to9 | FRO |
I 10 to 11 | X, GRY |
I 12 t0 13 | GRB |
| 14to15 1Y, S, GRS |
I 15 to 17 | GR4 |
| 18 to 19 | E, GR3 [
! 20to 21 | A, B, L, GR2 |
I 22 to 23 | GRl [
| 24 to 25 | GRO [
| 26 to 27 | XB |

1 4 5 67 8 9 10 11 12 13 14 15 16

I 0000 | FR1 | FROI X I -1 Y I -1 E | L,B,A | — |

Save Mask Format, RRST and RSAV Instructions
Figure 2-5

P> RIQ address
Remove Entry From Top of Queue
1100001111001100 (V mode form)
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into A. If the queue is empty, the instruction resets A to O
and the condition codes to EQ; if not empty, sets the condition codes
to NE. Ieaves the values of CBIT and LINK unchanged.

P> RTS
Reset Time Slice
0000000101001001 (Vmode form)
Valid for the 550-II, 750, 850, I450, and new processors.

The A register contains a negative value representing the number of

milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds until zero, when the time

Second Edition 2-96

J

J

)

S, R, AND V MODE

slice ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.

RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of A from the sum of the timers.
Stores the result in the elapsed timer. Loads the contents of A into
the interval timer. ILeaves the contents of A unchanged. The values of
CBIT, LINK, and the condition codes are unchanged.

The addition performed by this instruction is equivalent to the
following series of instructions.

IDA ITH /* load A with the contents of ITH
SUB RV /* subtract reset value (in RV) from contents of A

PIDA /* sign extend the contents of A into L bits 17 to 32
SRC /* skip next 16-bit halfword if CBIT is O (no overflow)
CMA /* complement A

AL, ET /* add contents of L and contents of ET

STL ET /* store contents of L in ET

IDA RV /* load A with reset value

STA ITH /* store the reset value into ITH

Note

RTS is a restricted instruction.

_-97 Second Edition

INSTRUCTION SETS GUIDE

> s1A
Subtract 1 From A
1100000001001000 (8, R, V mode form)

Subtracts 1 from the contents of A and stores the result in A. If the
number t0 be decremented is -(2**15), an integer exception occurs, and
the instruction loads (2**15)-1 into A. If no overflow occurs, the
instruction resets CBIT to 0. LINK contains the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P S2A

Subtract 2 From A
1100000011001000 (S, R, Vmode form)

Subtracts 2 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15)-1 or —2**15, an integer exception
occurs and the instruction loads (2**15)-1 or (2**15)-2, respectively,
into A. If no overflow occurs, the instruction resets CBIT to 0. LINK
contains the borrow bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P SAR n
Skip on A Register Bit Reset to O
100000001011N4 (S, R, Vmode form)

Skips the next 16-bit halfword if bit n in register A contains O.
leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of O indicates bit 1; 1, bit &2;
and SO on.
Note

The assembler converts n to the octal equivalent of bit number
minus 1.

Second Edition 2-98

'l I

J

)

S, R, AND V MCDE

P sasn
Skip on A Register Bit Set to 1
100000101011N4 (S, R, Vmode form)

Skips the next 16-bit halfword if bit n in register A contains 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of O indicates bit 1, and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

P> SEL address
Subtract Long
IX011111000Y11BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Subtracts the 32-bit integer in
the location specified by EA from the contents of L. Stores the
results in L. If the result is greater than (2**31)-1, an integer
exception occurs and the instruction loads bit 1 of L with a 1 and bits
2 to 32 with (result - (2**31)).

If the result is less than -(2**31), an integer exception occurs and
the instruction loads bit 1 of L with a O and bits 2 to 32 with the
negative of (result + (2**31)).

If no overflow occurs, the instruction resets CBIT to O. The
instruction loads LINK with the borrow bit. The condition codes
reflect the outcome of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P scB
Set CBIT to 1
1100000110000000 (S, R, Vmode form)

Sets the wvalue of CBIT to 1. The value of LINK is indeterminate.
leaves the values of the condition codes unchanged.

2-99 Second Edition

INSTRUCTION SETS GUIDE

P SGL
Enter Single Precision Mode
0000000000000101 (S, R mode form)

Enters single precision mode by resetting bit 2 of the keys to O.
Subsequent IDA, STA, ADD, and SUB instructions manipulate 16-bit
integers. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P SGT
Skip on A Greater Than O
1000000010010000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than 0. ILeaves the values of CBIT, LINK, and the condition
codes unchanged.

P SKPn
Skip
1000000000000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the specified condition is
met. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.
This instruction allows you to test for several conditions. The table

below shows the conditions available to test and information about the
associated instruction.

Second Edition 2-100

) I

J

AR

)

S, R, AND V MODE

Teble 2-8
SKP Conditions

Mnem | Opcode | Condition

l |
I [
| NOP | 101000 | No operation. I
I SKP | 100000 | Unconditional skip. |
SLT	101400	Skip on bit 1 of A to 1.
SGE	100400	Skiponb1tlofAequa.1toO
SIN	101100	Skip on bit 16 of A equal to
SIZ	100100	Skip on bit 16 of A equal to
SNE	101040	Skip on A not equal to O.
SEQ	100040	Skip on A equal to O.
I SS1*	101020	Skip on sense switch 1 set to 1.
SR1*	100020	Skip on sense switch 1 reset to O.
§S2*	101010	Skip on sense switch 2 set to 1.
SRR*	100010	Skip on sense switch 2 reset to O. I
SS3*	101004	Skip on sense switch 3 set to 1.
SR3*	100004	Skip on sense switch 3 reset to O.
SS4*	101002	Skip on sense switch 4 set to 1.
SR4*	100002	Skip on sense switch 4 reset to O.
SSS*	101036	Skip on any sense switches set to 1.
SSR*	100036	Skip on all sense switches reset to O.!
SSC	101001	Skip on CBIT set to 1.
I SRC | 100001 | Skip on CBIT reset to O. |

Note

*These are restricted instructions.

You do not have to specify the unique mnemonic to test a particular
condition; you can specify the SKP mnemonic and give the correct bit
configuration for bits 7 to 16 of the desired test. Make sure that you
set bit 7 of the SKP instruction properly: if it contains a 1, the
skip occurs if any of the specified conditions are true; if it
contains a O, the skip occurs if all of the specified conditions are
false.

P> SKS function,device
Skip on Condition Satisfied
01110 O FUNCTION\4 DEVICE\6 (S, R mode form)

Tests for the condition specified in the function field of the
instruction. ILeaves the values of CBIT, LINK, and the condition codes
unchanged. See Chapter 11 of the System Architecture Reference Guide
for more information.

2-101 Second Edition

INSTRUCTION SETS GUIDE

Note

SKS is a restricted instruction.

SLE
Skip i

f A Less Than or Equal to O
1000001

010010000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than or equal to 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

P SIN
Skip on LSB of A Nonzero
1000001001000000 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if bit 16 of A is 1. leaves
the values of CBIT, LINK, and the condition codes unchanged.

P sz
Skip on LSB of A Zero
1000000001000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the bit 16 in A equals O.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

P SMCR
Skip on Machine Check Reset to O
1000000010000000 (S, R, Vmode form)

Skips the next 16-bit halfword if the machine check flag is 0. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.
Note
If the processor is operating in machine check mode, this

instruction has no meaning; it executes as an wunconditional
skip.

Second Edition 2-102

J J

J

D)

)

D

S, R, AND V MODE

P> SMCS
Skip on Machine Check Set to 1
1000001010000000 (8, R, Vmode form)

Skips the next 16-bit halfword if the machine check flag is 1. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processer is operating in machine check mode, this
instruction has no meaning; it executes as a NOP.

p SMI
Skip on A Minus
1000001100000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than 0. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

P swz
Skip on A Nonzero
1000001000100000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are not
equal to 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

P sSPL
Skip on A Plus
1000000100000000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than or equal to 0. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

P SrC
Skip on CBIT Reset to O
1000000000000001 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of CBIT is O.
ILeaves the values of CBIT, LINK, and the condition codes unchanged.

2-103 Second Edition

INSTRUCTION SETS GUIDE

P ssc
Skip on CBIT Set to 1
1000001000000001 (8, R, Vmode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

P ss
Set the Sign of A Minus
1100000101000000 (S, R, Vmode form)

Sets bit 1 of A to 1. Ieaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

Pp Ssp
Set the Sign of A Plus

1100000001000000 (S, R, Vmode form)

Sets bit 1 of A to 0. Ieaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

P> sssw
Store System Serial Number
0100000011001000 (V mode form)

This instruction is applicable only for the 2350 to the 0955 II. A
l4-character system identifier programmed into the processor during
manufacturing consists of a 2-character plant location code followed by
a 12-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the remaining halfwords are
reserved for future expansion and are O.

Ieaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-104

J J

J

)

S, R, AND V MOCE

P> STA address
Store A Into Memory
IX010011000Y00BR\2 (Vmode long)
DISPLACEMENT\ 16

IX010011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X010 O DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the A
register in the location specified by EA. Ileaves the values of CBIT,
LINK, and the condition codes unchanged.

P> STAC address
Store A Conditionally
00000061010000000 (V mode form)
AP\32

Compares the contents of B with the contents of the location referenced
by the specified address pointer. If the two values are equal, the
instruction stores the contents of A into that referenced location. If
the two values are not equal, execution continues with the next
instruction. Ieaves the values of CBIT and LINK unchanged. Sets the
condition codes to EQ if the store occurs and to NE if not.

The comparison and store will not be separated by execution of other
instructions. This means that no instruction can alter the contents of
the specified memory location between the compare and the store.

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/0; this means you can use it to
interlock a process with a IMA, DMC, or IMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/0.

P STC fir
Store Character
000000101101 FIR010 (V mode form)

If the contents of the specified FIR are nonzero, the instruction
stores the contents of bits 9 to 16 of A into the character byte
pointed to by the appropriate FAR. Updates the contents of the
appropriate FAR so that they point to the next character. Decrements
the contents of the specified FIR by 1. Sets the condition code NE.

2-105 Second Edition

INSTRUCTION SETS GUIDE

If the contents of the specified FIR are O, the STC instruction sets
the condition code EQ and does not store a character.

The STC instruction leaves the values of LINK and CBIT unchanged.

Note

Vhen the instruction specifies FLRO, FARO is used; FLR1, FARI.

P STEX
Stack Extend
0O000001011001101 (Vmode form)

Extends the length of the procedure stack.

A and B contain a 32-bit number specifying the halfword size of the
extension. (A halfword is 16 bits.)

The firmware rounds up the number specified by A and B to an even
number of halfwords. The instruction uses this wvalue to allocate a
block of memory to the procedure stack. The extension and the initial
stack do not have to be contiguous, since there may not have been
enough room left in the initial stack to contain a complete frame.

The instruction returns a segment number/offset number in A and B that
specifies the starting address of the extension.

The extension is automatically deallocated when the current procedure
completes execution. There is no limit on the number of extensions you
can make.

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeterminate. See Chapters
8 and 10 of the System Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

P> STFA far,address
Store FAR
OOOO0OO0OO0101101FAROO0O0 (V mode form)
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of that FAR contains O, the
instruction stores the first 32 bits (2 halfwords) of the pointer and
clears the pointer’'s extend bit to 0. If the bit number field of that
FAR does not contain O, the instruction saves all 48 bits (three
halfwords) of the pointer and sets the pointer’'s extend bit to 1.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Second Edition 2-106

J

J

J

D

)

S, R, AND V MODE

P> STL address
Store Long
IX010011000Y11BEBrR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of L in the
32-bit location specified by EA. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

P> STIC address
Store I Conditionally
0000001010000100 (V mode form)
AP\32

Calculates an effective address, EA. Stores the contents of L into the
32-bit location specified by EA if and only if the contents of the
specified location equal the contents of E. ILeaves the values of CBIT
and LINK unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.)

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/0; this means you can use it to
interlock a process with a IMA, IMC, or DMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/0.

P> STIR address
Store L Into Addressed Register
IX001111000Y01BR\2 (Vmode form)
DISPLACEMENT\ 16

Calculates a 32-bit (1-word) effective address, EA. Stores the
contents of L into the register location specified by the offset
portion of EA. Bit 2 and bit 12 of the offset portion of EA determine
the actions of this instruction as follows.

2-107 Second Edition

INSTRUCTION SETS GUIDE

Bit 2 Bit 12 Action

1* ———= Ignore bit 1 and bits 3 to 9. The offset
portion of EA specified an absolute register
number from O to '377.

O* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers ‘20 to ‘37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA
specify one of the registers O to '17 in the
current register set.

*This is a restricted instruction.
STIR leaves the values of CBIT and LINK unchanged; the values of the

condition codes are indeterminate. See Chapter © of the System
Architecture Reference Guide for more information about register sets.

Note

Do not use the STIR instruction to write into the keys or
modals. You can use LPSW or a mode control operation to change
either of these registers. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

In addition, do not change the contents of the procedure base
register (PB) with this instruction. Use either LPSW or a
control transfer. Loading any velue other than O into PBL will
change future effective address calculations for the currently
running process.

P STPM
Store Processor Model Number
0O000000000010100 (V mode form)

Stores the CPU model number and mnicrocode revision number in an
8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field. The format of the field is shown in Table 2-9.

Second Edition 2-108

) J

J

3

)

)

Table 2-9

S, R, AND V MODE

STPM Memory Field Format

| Halfword | Name

| Description

I
[f
I '1to2 | Processor | Contains a code specifying the machine: |
I | Model | OL - 400/500, no 15L - 9950 |
f [Number | Rev B microcode 16L - 9650 I
| I [1L - 400, Rev. B 17L - 2550 [
I I I microcode 18L - 9955 I
| [I 2L - Reserved 19L - 9750 [
f I ! 3L - 350 21L - 2350 |
| | I 41, - 450/550 2L ~ 2855 I
! I l 8L, - 750 23L - 9655 |
I I | 6L - 650 28L - 2450 [
{ | [7L - 250 30L - 9955 II |
| I ! 8L - 850 31L - 2755 |
I | | 9L - 250-II 34L - 6350 |
f |] 10L, - 550-I1 42L, - 9755 I
i | [11L - 2250 I
[| | I
| 3 to4 | Microcode | Offset 3: I
| | Revision | Bits 1 to 8 Reserved I
| | I Bits 9 to 16 Manufacturing microcode |
| | f revision number I
| | | Offset 4: [
! | | Bits 1 to 16 Engineering microcode |
! I | revision number |
| | | |
| 5 | Processor | Specifies options enabled for this machine: |
I | Line I Bits 1 to 15 Reserved; must be O |
| | | Bit 16 Marketing segment |
| ! | specification bit |
! | | |
| 6 | Extended | To be implemented. l
| | Microcode | |
[| ID | |
| | | |
I 7 to8 | — I Reserved for future use. !

This instruction leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

STPM is a restricted instruction.

2-109

Second Edition

INSTRUCTION SETS GUIDE

P> STIM
Store Process Timer
0000000101001000 (V mode form)

Valid for the 550-II, 850, I450, and 2350 to 9955 II.

The current process time is represented by the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions.

IR PB% + ‘25 /* Get PCB address.

ATL = '10L /* Offset of elapsed time.

STL TEMP1 /* Elapsed time address -> Temp.
ITTR PB% + ‘30 /* Read timer.

TAB /* Store low order

STA XB% + 2 /* 16 bits.

IAB /* Adjust

PIDA /* weighting.

ATL TEMP1, * /* Add elapsed time.

STL XB% + 0

Leaves the values of the CBIT, LINK, and condition codes indeterminate.
This instruction is not implemented on the 2250.

P> STX address
Store X
I0110111000Y00BR2 (Vmode long)
DISPLACEMENT\ 16

I0110111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I0110 1 DISPLACEMENT\10 (S mode; R, V mode short)
Calculates an effective address, EA. Stores the contents of X at the
location specified by EA. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.
Note
STX cannot directly specify indexing, though an address in the

indirection chain may do so in 16S mode. See Appendix B for
more information.

Second Edition 2-110

J

J

S, R, AND V MODE

P STY
Store Y
I1110111000Y10BEB\2 (Vmode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of Y at the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The STY instruction cannot do indexing. See Appendix B for
more information.

P> SUB address
Subtract
IX011111000Y00ER\2 (V mode long)
DISPLACEMENT\ 16

IX011111000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X011 1DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit integer
contained in the location specified by EA and subtracts them from the
contents of A. Stores the results in A.

If the result is greater than or equal to 2**15, an integer exception
occurs and the instruction sets CBIT to 1 and loads bit 1 of Awith a l
and bits 2 to 16 with (result minus (2**15)).

If the result is less than -2**15, an integer exception occurs and the
instruction loads bit 1 of A with O and bits 2 to 16 with the negative
of (result + (2**15)).

If no overflow occurs, the instruction resets CBIT to 0. LINK contains
the carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-111 Second Edition

INSTRUCTION SETS GUIDE

p swc
Supervisor Call
0O000000101000101 (S, R, Vmode form)

Supervisor call. Generates a directed fault. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

P SZE

Skip on A Zero
1000000000100000 (S, R, Vmode form)

Skips the next sequential 16-bit halfword if the contents of A equal O.
leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-112

J

J

3

AN

S, R, AND V MCLE

P TAB
Transfer A to B
1100000011001100 (V mode form)

Transfers the contents of A into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

p TAK
Transfer A to Keys
0000001000001 101 (Vmode form)

Moves a copy of the contents of A into the keys. Loads CBIT, LINK, and
the condition codes as a result of the operation. Resets bits 15 to 16
of the keys to O.

Note

If the new contents of the keys specifies a new addressing
mode, the new mode takes effect with the instruction
immediately following TAK.

P TAX
Transfer A to X
1100000101000100 (V mode form)

Loads X with a copy of the contents of A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

P TAY

Transfer A to Y
1100000101000101 (V mode form)

Ioads Y with a copy of the contents of A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

P 1BA
Transfer B to A
1100000110000100 (V mode form)

Transfers a copy of the contents of B to A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2-113 Second Edition

INSTRUCTION SETS GUIDE

» TCA
Two's Complement A

1100000100000111 (S, R, Vmode form)

Forms the two’'s complement of the contents of A and stores the result
in A. If the number to be complemented is -2**15, an integer exception
occurs and the instruction loads -2**15 into A. If no integer
exception occurs, the instruction resets CBIT to O. LINK contains the
carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P 1cL
Two’'s Complement Long
1100001010001000 (V mode form)

Forms the two’'s complement of the contents of L and stores the result
in L. If the number to be complemented is -2**31, an integer exception
occurs and the instruction loads -2**31 into L. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

}TFLLflr
Transfer FIR to L
O0OO0O000101101FIR0O011 (V mode form)

Transfers the contents of the specified FIR into L as an unsigned,
32-bit integer. Clears bits 1 to 11 of L to 0. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

P KA
Transfer Keys to A
0000001000000101 (Vmode form)

Moves a copy of the keys into A. ILeaves the values of CBIT, LINK, and
the condition codes unchanged.

Secord Edition 2-114

J

)

S, R, AND V MODE

p TIFL flr
Transfer L to FIR
O0O0OO0O00101101FIRO001 (Vmode form)

Transfers the 32-bit unsigned integer contained in L into the specified
FIR. Clears bits 1 to 11 of L to O so that bits 1 to 6 of the
specified FIR will be O. ILeaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction allows you to load the specified FIR with a
value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment.

P TSIQ address
Test Queue
1100001111101111 (Vmode form)
AP\32

The address pointer in this instruction is to the QCB of a queue. This
instruction tests the referenced queue and sets A to equal the number
of items in the queue. Sets the condition codes to BEQ when the queue
is empty. If the queue is not empty, sets the condition codes to NE.
lLeaves the values of CBIT and LINK unchanged.

> XA
Transfer X to A
1100001000011100 (V mode form)

Transfers a copy of the contents of X to A. ILeaves the values of CBIT,
LINK, and the condition codes unchanged.

p TYA
Transfer Y to A
1100001001010100 (Vmode form)

Transfers a copy of the contents of Y to A. ILeaves the values of CBIT,
LINK, and the condition codes unchanged.

2-115 Second Edition

INSTRUCTION SETS GUIDE

P> WAIT address
Wait
0000000011001101 (V mode form)
AP\32

The address pointer in this instruction is to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than O,
either the resource is not available, or the event has not occurred.
The instruction removes the PCB from the ready list, suspending the
process, and adds it to the wait list associated with the semaphore.
It then makes the register set available, turns off the process timer,
and goes to the dispatcher to find another process to run. The
dispatcher enables interrupts.

If C is less than or equal to O, the currently executing process
continues.

If the instruction places the PCB on the walt list, no general
registers are saved. This means that a process cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Leaves CBIT, LINK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instructionm.

Second Edition 2-116

Y)

D)

S, R, AND V MODE

P xAD
Decimal Add
0000001001 00000Q00O0 (V mode form)

Performs a decimal arithmetic operation under control of FARO, FARl,
and L.

FARO contains the address of field 1. FARl contains the address of
field 2. L contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
2-10.

Table 2-10
XAD Decimal Operations

| B 1 C | Operation | Destination |
| l
I 01 O I +F1+4F2 | F2 |
IO 11 +F1-F2 | F2 [
11 01 -F1+F2 | F2 [
1111 -F1-F2 | F2 |

The scale differential field in the control word specifies the
difference in the decimal point alignment between F1 and F2:

SD Relation of F1 and F2
SD>0 Fl1 > F2
SD=0 Fl =F2
SD<0 Fl1 <F2

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

If the add operation results in an overflow, a decimal exception
occurs. If no overflow occurs, the instruction sets CBIT to O to
indicate success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

2-117 Second Edition

INSTRUCTION SETS GUIDE

The registers used are GRO, GR1, GR3 (E), GR4, GRG, FARO, FARl, FIRO,
and FIR1l. At the end of the XAD instruction, the contents of these
registers is indeterminate. The value of LINK is indeterminate. The
condition codes reflect the state of FR after the decimal operation.

(See Appendix A.)

P> XBID
Binary to Decimal Conversion
0000001001100101 (Vmode form)

Converts a binary number t0 a decimal number. FARO contains the
decimal field address. L contains the control word.

This instruction uses fields A, E, and H in the control word. H
specifies the length of the binary number and its location:

H Length Location
0] 16 bits EH register
1 32 bits E register

2 64 bits DAC register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Overflow results in a
decimal exception. If no overflow occurs, the instruction resets CBIT
to 0. leaves the value of LINK indeterminate. The wvalues of the
condition codes are indeterminate.

The registers used are GRO, GR1l, GR3 (E), GR4, GR6, FARO, and FIRO. At
the end of the instruction, the contents of these registers are
indeterminate.

¥hen the source register contains a null string, the destination
register will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FIR1l, or FACL.

Second Edition 2-118

J

J

\

)

S, R, AND V MODE

> xca
Exchange and Clear A
1100000001000100 (S, R, Vmode form)

Interchanges the contents of registers A and B, then clears A to O.
lLeaves the values of CBIT, LINK, and the condition codes unchanged.

P> XCB
Exchange and Clear B
1100000010000100 (8, R, Vmode form)

Interchanges the values of A and B and then clears B to 0. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P xcM
Decimal
0000001001000010 (V mode form)

Compares two decimal numbers and sets the condition codes depending on
the result of the compare.

FARO contains the address of field 1 (F1). FARl contains the address
of field 2 (F2). L contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

Compares the two specified numbers. The instruction uses the G field
of the control field to adjust the two numbers before the compare:

G Decision

>0 Low-order digits of F1 only affect the initial borrow
from the low-order digit of Fa.

<0 Assume F1l is zero-extended with low zeros.

The registers used are GRO, GRl, GR3 (E), GR4, GRS, FIRO, and FIR1l. At
the erd of this instruction, the contents of these registers are
indeterminate. The CBIT is reset to O when there is no decimal
exception. (This instruction camnot cause a decimal exception.)
Leaves the value of LINK indeterminate. The condition codes reflect
the result of the compare, as follows.

2-119 Second Edition

INSTRUCTION SETS GUIDE

cC Test Result
GT F2 > Fl
R F2 = Fl1
LT F2 < F1
P> XDIB

Decimal to Binary Conversion
0000001001100110 (Vmode form)

Converts a decimal string to a binary string.
FARO contains the address of the decimal string. L contains the

control word; +this instruction uses the A, E, and H fields. Field H
specifies the length of the binary string and its location:

H Length Destination Register
00 16 bits A register

0l 32 bits L register

10 64 bits LIE

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. Leaves the value of LINK unchanged. The values of
the condition codes are indeterminate.

The registers used are GRO, GRl, GR3 (E), GR4, GR6, FARO, and FIRO. At
the end of this instruction the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1l, FIR1l, or FACI.

Second Edition 2-120

/

J

9

S, R, AND V MODE

p xov
Decimal Divide
0O000001001000111 (V mode form)

Divides a decimal number, D2, by another, D1, and stores the quotient
and remainder in the location of DR.

FARO contains the address of D1. FARl contains the address of D2. L
contains the control word; this instruction uses fields A, B, C, E, F,
H, and T.

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeros equal to the length
of DI1.

The instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (D2 length - D1 length)
followed by the remainder of length (D1 length). Since DR had leading
zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used are GRO, GRl, GR3 (E), GR4, GRS, FARO, FAR1, FIRO,
and FIR1. At the end of this instruction, the contents of these
registers are indeterminate.

If D1 is O, overflow occurs which causes a decimal exception. Decimal
exceptions also occur if D1 or D2 have the incorrect data type or if
the length of D2 is less than that of D1. If no overflow occurs, CBIT
is reset to 0. At the end of the instruction, LINK and the condition
codes contain undefined results.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

P> XEC address
Execute
IX000111000Y10E\2 (Vmnode long)
DISPLACEMENT\ 16

IX000111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Executes the instruction found at
EA, but does not transfer control to that location. leaves the values
of CBIT, LINK, and the condition codes modified as specified by the
executed instruction.

2-121 Second Edition

INSTRUCTION SETS GUIDE

The XEC instruction has limited application since all instructions
cannot be executed in this way. The XEC instruction is useful for
16-bit register generic instructions such as shifts, rotates, clears,
interchanges, and NOPs.

The following instruction types should not be used with XEC since they
may not execute properly or will produce undefined results:
instructions that change the address mode, program counter, or
instruction stream; instructions that cause arithmetic faults;
decimal or character instructions; and generic skips.

P XED
Numeric Edit
0000001001001 010 (V mode form)

Edits the contents of a string under control of a subprogram.

The registers used are L, XB, FARO, FAR1, and FIRO. At the end of the
instruction, the contents of these registers and the CBIT, LINK, and
cordition codes are indeterminate.

FARO contains the address of the source string. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FAR1 contains the address of the destination string. Bits 1 to 8 of A
contain the floating character; bits 9 to 16, the status register.
Bits 1 to 8 of B contain the number of remaining bytes to be processed
(used if a fault or interrupt occurs). Bits 9 to 16 of B contain the
suppression character whose initial wvalue is determined by bit 12 of
the keys ('240 if bit 1 contains O; ‘40 if bit 12 contains 1). XB
contains the address of the edit subprogram.

The instruction uses an edit subprogram to alter a source string and
store the edit result in a destination location(s). To set up, perform
a decimal move to correct the type, alignment, and length of the number
to be edited. Next, use a LCEQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 2-6.

Second Edition 2-122

J

J

)

A

1l 2 34 89 16

'L 1 00 I E I M I

Edit Subprogram Halfword Format
Figure 2-6

S, R, AND V MODE

where L is 1 if this 16-bit halfword is the last halfword

in the subprogram,
O if it is not the last halfword;
is a suboperator;
is a suboperator modifier.

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 2-11.

Table 2-11
XED Internal Variables

I Var | Definition

r

I SC | Zero suppression character; contained in B. Initial
| | value is the space character (‘240 or ‘40, depending
[[on whether bit 12 of the keys contains O or 1.

| |

I FC | Floating edit character; contained in A. Initial

| | value is not defined.

| |

| SIGN | Sign of the source field. The first character fetch
| I sets up the value of this variable.

| |

| SIG | End zero suppression flag.

There are 17 edit suboperators, shown in Table 2-12.

2-123

Second Edition

INSTRUCTION SETS GUIDE

Table 2-12
XED Suboperators

| Subop | Mnem | Name and Description

00

Ol

03

05

10

|
|
|
|
|
I
|
I
I
[
I
I
I
|
|
|
|
|
|
I
!
|
|
|
|
!
|
|
|
|
!
I
f
|
I
|
|
|
[
f
|
|
1l
I

I
I
|
|
I
I
I
|
|
!
!
I
I
I
I
I
|
|
|
|
|
|
!
I
|
[
[
|
|
I
I
I
I
|
|
|
|
I
|
|
!
|
I

|
|
2S | Zero Suppress. Fetches M digits from the source |
field consecutively, each time checking SIG. If |
SIG is 1, copies the digit into the destination |
string. If SIG is O and the digit is not O, I
inserts the floating character (if defined) |
and copies the digit into the destination field. |
If SIG is O, the digit is not O, and the I
floating character is not defined, sets the SIG |
flag and copies the digit into the destination. |
If SIG and the digit are both O, substitutes |
SC for the O digit in the destination field. |
Insert Literal. Copies M into the |
destination string. Increments XB and FARL by 1.

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

IL |
|

SS | Set Suppress Character. Sets SC to M and

| increments XB by 1.

ICS | Insert Character. If SIG is 1, copies M into the

| destination string. If SIG is O, copies SC into

| the destination string. Increments XB and FAR]

| by 1.

| Insert Digits. If SIG is O, and FC is defined,

| copies FC and M digits into the destination fieldl

| then sets SIG to 1. Increments XB by 1, FARO by |

I M, and FARl1 by M+1l. If SIG is O and FC is not |

I defined, sets SIG to 1 and copies M digits from |

| the source to the destination; increments XB by |

I 1 and both FARO and FAR]1 by M. If SIG is 1, |

| copies M digits from the source to the [

| destination and increments XB by 1 and both FARO |

| and FAR1 by M. l

ICM | Insert Character if Mimus. If SIGN = 1, copies |
| M into the destination string. If SIGN =1, [
| copies SC into the destination string. I
| Increments both SB and FAR1 by 1. |

ICP | Insert Character if Plus. If SIGN =0, copies M |
| into the destination string. If SIGN =1, |
| copies SC into the destination string. I
| Increments both SB and FAR1 by 1. |
| Set Floating Character. Sets FC to M and |
| increments XB by 1. |
| Set Floating if Plus. If SIGN = O, sets FC to M. |
| If SIGN = 1, sets FC to SC. Increments XB by 1. |
| Set Floating if Minus. If SIGN = 1, sets FC to M. |
| If SIGN = 0, sets FC to SC. Increments XB by 1. |

SFP

Second Edition 2-124

J

J

Y)

D

Table 2-12

S, R, AND V MODE

XED Suboperators (continued)

Mnem | Name and Description

12

13

14

15

16

17

SFS

Jz

FS

IS

Set Floating to SIGN.

If SIGN = O, sets FC to

'253. If SIGN = 1, sets FC to ‘255. Increments

XB by 1

Jump if Zero. If the condition flag in A = O,

increments XB by 1.

If the condition flag in A

=1, adds M to XB and then increments XB by 1.
Fill with Suppression Characters. Copies SC

XB by 1 and FAR]1 by M.

Set Significance. If SIG = O and FC <> O, inserts
FC into the destination string, sets SIG to 1,
and increments ¥B and FAR]1 by 1. If SIG = O and
FC = 0, sets SIG to 1 and increments XB and FAR1
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = O, copies ‘253 into the

destination string.

|
[
|
|
|
|
|
|
|
M times into the destination string. Increments |
[
|
|
|
|
|
I
|
|

If SIGN = 1, copies ‘255

into the destination string. Increments XB by 1.
Suppress Digits. Fetches M digits from the source |
string and checks if they are '260. If the sourcel
digit = ‘260, inserts SC into the destination
string. If the source digit <> '260, copies the
source digit into the destination string.
Increments XB by 1 and both FARO and FAR1 by M.

Embed Sign

destination string.

Fetches M digits from the source

If SIGN = 1, embeds a minus

sign into each digit before copying it into the

destination string.

Table 6-15 shows the

characters used to represent the sign/digit
combinations. A } symbol represents negative O.

[
[
|
|
|
string. If SIGN = O, copies each digit into the |
|
|
|
|
|

2-125

Second Edition

INSTRUCTION SETS GUIDE

> xr
Decimal Multiply
0000001001000100 (V mode form)

Multiplies one decimal number, M, by another, D1, and stores the result
in D2‘'s location in memory. M is right justified in field DR at the
start of the operation.

FARO contains the address of D1. FARl contains the address of D2. L
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Field G, the scale differential, must contain the number
of decimal digits in M.

The number of decimal digits in D2 is greater than or equal to the
number of decimal digits in D1 plus the number of decimal digits in M
(specified by G). Normally, the digits to the left (more significant
side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by Dl and stores the result in the
location specified by FARl. The result of the multiply is:

Dl x M + partial product field
The partial product field is equal to:
length(D2) - M.

The partial product field is 1left justified in DR’'s location. The
maximum partial product added in per traverse of the multiplicand is:

source digits + multiplier digits processed

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits

If the T bit is set to 1, the results are forced positive. See Chapter
6 of the System Architecture Reference Guide for more information about
decimal arithmetic.

A decimal exception occurs if there are more potential or actual
product digits than there is space in IR.

The registers used are GRO, GR1, GR3 (E), GR4, GRS, FARO, FARl, and XB.
At the end of this instruction, the contents of these registers are
indeterminate. Overflow causes a decimal exception; if no overflow
occurs, resets CBIT to 0. LINK contains undefined results. At the end
of the instruction, the condition codes reflect the state of the

result. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a O, the
XMP instruction sets CBIT to 1. If bit 11 contains a 1, the

Second Edition 2-126

J

D)

)

)

S, R, AND V MODE

instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information.

p v
Decimal Move
0O000001001000001 (V mode form)

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. L contains the control word; this
instruction uses fields A, B, D, E, F, G, H and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, changes the the sign of the source field during the move.
If the D field in the control word is 1 and the scale differential is
greater than O, the instruction rounds the source field during the
move. If the scale differential (from the H field) is less than O, the
instruction pads the source field with SD trailing zeros before
transferring.

Since the T bit is used by all systems for this instruction, the result
is forced positive if this bit is set to 1.

The registers used are GRO, GR1l, GR2 (L), GR3 (E), GR4, GR6, FARO,
FAR1, FIRO, and FIR1l. At the end of this instruction, the contents of
these registers are indeterminate.

A decimal exception occurs if there are more mnon-zero source digits
than there is room in the destination, after any padding. If there is
no decimal exception, CBIT is reset to 0. Ieaves the value of LINK
indeterminate. The values of the condition codes reflect the state of
the destination field after the move. (See Apperdix A.)

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. If no exception
occurs, the instruction sets CBIT to 0. See Chapter 10 of the m
Architecture Reference Guide for more information about
exceptions.

Note

The source and destination strings may not overlep in memory.

2-127 Second Edition

INSTRUCTION SETS GUIDE

P zom
Character Field
0000001001001111 (V mode form)

Compares two fields and sets the condition codes depending on the
result of the compare.

FARO contains the address of field 1 (F1). FIRO contains an integer
specifying the length of Fl. FARl contains the address of field 2
(F2). FIR1 contains an integer specifying the length of F2.

The instruction compares the contents of F1 and FR2 on a byte by byte
basis. If the fields are not of equal 1length, the instruction
automatically extends the shorter string with space characters. A
space character is ‘240 or ‘40 when bit 12 of the keys contains O or 1,
respectively. Sets the condition codes as a result of the compare:

Result of Compare Set Condition Codes

F1 > F2 GT
F1 = F2 15
F1 < F2 LT

The registers used are GR3 (E), GR4, FARO, FAR1l, FIRO, and FIRl; at
the end of this instruction, the contents of these registers are
indeterminate.

¥hen the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

p ZED
Character Field Edit
0000001001001001 (Vmode form)

Controls an edit subprogram.
Uses the registers FARO, FAR1l, FIRO, and XB. At the end of this

instruction the contents of these registers are indeterminate. Leaves
the values of CBIT, LINK, and the condition codes indeterminate.

Second Edition 2-128

J

S, R, AND V MODE

FARO contains the address of the source string. FLRO specifies the
length of the source string. FARl contains the address of the
destination string. XB contains the address of the edit subprogram.

The instruction uses the edit subprogram to alter the source string,
then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a 1list of
commands, each with the format shown in Figure 2-7:

1 2 6 7 8 9 16

| L 1 00000 I E | M I

ZED Subprogram Word Format
Figure 2-7

where L is 1 if this command is the last command in the subprogram,
0 if it is not;
E is the edit opcode;
M is the edit modifier.

Bits 2 to 6 must be O.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 2-13.)

E, the edit suboperator, specifies the operation to be performed on the
source string. Available values for E are shown in Table 2-13.

2-129 Second Edition

INSTRUCTION SETS GUIDE

Table 3-16
ZED Suboperators

| Subop | Value |

Action

CPC 00

INL ;| O1

SKC 10

BIK

I
I
I
[
|
I
I
|
|
|
I
|
|
I
|
I
|
I
|
|
I
I
I
I
I
I
I
|
I
[11
I

|

Copies characters from the source string into the
destination string.
string is greater than the contents of the M field,
then CPC moves a total of M source characters into
the destination string, increments FARO and FAR1 by
by M, increments XB by 1, and decrements FLRO by M.
If the length of the source string is less than the
the contents of the M field, then CPC moves the
rest of the source string into the destination
string, and then pads the remaining space to be
filled with spaces.
by FILRO and FAR1 by M, increments XB by 1, and
and decrements FIRO by FLRO (so FIRO = 0).

If the length of the source

(See note.) Increments FARO

Inserts M into the destination string and
increments both XB and FAR1 by 1.

Skips characters in the source string. If the
remaining length of the source string is greater
than or equal to the contents of the M field, then
SKC skips over the next M characters of the source
field by incrementing FARO by M and decrementing

FIRO by M.

If the

remaining length of the source

string is less than the contents of the M field,

SKC skips over FIRO characters in the source string
by incrementing FARO by FIRO and decrementing FLRO
by FIRO (FIRO = 0).

XB by 1.

In either case, SKC increments

Inserts M spaces (see note) into the destination
string, increments FAR1 by M, and increments XB

by 1.

Note

A space is ‘240 or ‘40, depending on whether bit 12 of the keys
This instruction uses GR3, GR4, the FARs, and the

is 0 or 1.
FIRs during its operation.

Since 2ED does not sawve the

contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

Second Edition

2-130

) J

S, R, AND V MODE

> zZFIL
Fill Field with Character
0000001001001110 (V mode form)

Stores a character into a series of destination bytes.

Bits 9 to 16 of L contain the character to be stored. FAR1 contains
the starting address of the destination field (byte aligned). FLR1
contains an integer specifying the length of the destination field (in

bytes).

The instruction stores the character specified in L in each byte of the
destination field. If FIR1 contains O, no operation takes place.
leaves the values of CBIT, LINK, and the condition codes indeterminate.

The registers used are GR3 (E), GR4, FARO, FARl, FIRO, and FIRl; at
the end of this instruction, the contents of these registers are
indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

p v
Move Character Field
0000001001001100 (V mode form)

Moves a character field from one location to another.

FARO contains the address of the source string (byte aligned). FIRO
specifies the length in bytes, N, of the source string. FARl contains
the address of the destination string (byte aligned). FIR1 specifies
the length in bytes, M, of the destination string.

s Nand M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. (A space character is ‘240 or ‘40 when bit 12 of
the keys is O or 1, respectively.) If the destination string is
shorter, the instruction moves the first M characters of the source
string into the destination string.

Vhen the instruction completes, the values of FARO, FARl, FIRO, FIR1,
CBIT, LINK, and the condition codes are indeterminate.

2-131 Second Edition

INSTRUCTION SETS GUILE

>

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIRs
during its operation. Since ZMV does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

ZMVD
Move Characters Between Equal Length Strings
0000001001001101 (Vmode form)

Moves characters from one string to another of equal length.

FARO contains the address of the source string.
address of the destination string.

characters to move, N.

The instruction moves N characters from the source string to the
destination string. Characters are moved from lower addresses to

higher addresses.

The registers used are GR3 (E), GR4, FARO, FARl, FLRO, and FIR1;

the end of this instruction,
indeterminate.

indeterminate.

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIRs
during its operation. Since ZMVD does not save the, contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

Second Edition 2-132

FAR1 contains the
FIR1l contains the number of

the contents of these registers are
The wvalues of CBIT, LINK, and the condition codes are

J

J

D)

)

S, R, AND V MODE

P> ZTRN
Character String Translate
0000001001001000 (V mode form)

Translates a string of characters and stores the translations in the
specified destination.

FARO contains the address of the source string (byte aligned). FAR1
contains the address of the destination string (byte aligned). FIR1
specifies the length of the source and destination strings. XB
contains the starting address of a translation table. Each byte in the
256-byte table contains an alphabetic character.

The ZTRN instruction uses the address in FARO to reference a character.
It interprets this character as an integer, adding it to the contents
of XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FARl. After storing the character, the
instruction increments the contents of FARO and FAR1 by 1, decrements
the contents of FIRl by 1, and repeats the operation until FIR1
contains O.

At the end of the instruction, FARO and FAR1 point to the location that
follows the last byte of the source and destination strings,
respectively. FIR1 contains 0. ILeaves the values of XB, CBIT, LINK,
and the condition codes unchanged.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

2-133 Second Edition

b

3

I Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in I mode. In the descripticn of each instruction, you will find:

¢ The instruction mmemonic followed by any arguments.

e The name of the instruction.

e The bit format of the instruction.

e Detailed information describing the instruction’s action.

e Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 3-1 defines the dictionary notation.

3-1 Second Edition

INSTRUCTION SETS GUIDE

Table 3-1
Dictionary Notation

Symbol | Meaning

The 16-bit A register.

Encompasses all the elements needed to specify an
effective address. This term is used because various

addressing types require you to specify the elements
in different orders (such as indirect or pre- and
post-indexing).

Address pointer.

The 16-bit B register.

Base register.

Bit 1 of the keys.

The double precision floating-point accumulator with 48
bits of mantissa and 16 bits of exponent.

The number of halfwords to be added to the base register
to form the effective address.

The 32-bit E register.
Effective address.
Floating-point accumlator.

The single precision floating-point accumulator with 48
bits of mantissa and 16 bits of exponent.

Field address register.

Field length register.

A 32-bit general register, where n is O through 7.
A 16-bit unit of memory.

Indirect bit.

The 32-bit L register.

|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
| Destination register (normal register specifier).
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Bit 3 of the keys. Not used in S and R modes.
|

Second Edition 3-2

A

I MODE
Table 3-1 (continued)
Dictionary Notation
Symbol | Meaning
Offset The number of halfwords from the starting address of a
segment .
PB The procedure base register.
QAC The quad precision floating-point accumulator with 96

bits of mantissa and 16 bits of exponent.

| [
| |
! | |
| | |
| l |
[| |
[| |
[| |
| | r
I | |
I R I A 32-bit general register. |
I | |
(T | Bits 1 to 16 of a general register. |
I [|
I skip | Skip next 16-bit halfword before continuing execution. |
I | |
I SR | Source register (or index if memory reference). |
I | |
I T™ | Tag modifier. Bits used in I mode effective address |
| | calculation to specify indirection, indexing, etc. l
I | |
| X | The X register (indexing). l
! | l
| XB | Auxiliary base register. |
I | |
| Word | A 32-bit unit of memory. [
| | |
'Y | The Y register (indexing). |
l | |
| m\n | Specifies the number of bits, n, occupied by field m. |
! | l
[1 |

Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 3-2 lists the resumable assembly language instructions.

3-3 Second Edition

INSTRUCTION SETS GUIDE

Table 3-2
Resumable Instructions

Instructions

|
I
ARGT XAD XBID XCM |
XDIB XDV XED XMP |
MV ZCM ZED ZFIL |
P4 ZMVD ZTRN STEX |

These instructions depend on the settings in certain registers to
determine whether they are being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the 6350 and 9750 to 9955 II Instruction Stream

After any instruction that stores data into memory, you must wait five
instructions before executing data. If in doubt about the next five
instructions (temporally) to be executed, a mode change instruction to
the current addressing mode, such as E32I, allows the stored data to be
executed.

Instruction Formats

All T mode instructions belong to one of the following instruction
types:

o I Mode Memory Reference

e I Mode Special Memory Reference

e I Mode Generic AP (Address Pointer)

e I Mode Register Generic

e I Mode Register Generic Branch

e Generic A and B (see below)
The format of each instruction type is shown in Figure 3-1.
Memory reference instructions have the opcode in bits 1 to 6. Special
memory reference instructions (for floating point) have the opcode in

bits 2, 3, 7, and 9; Dbit 8 specifies the floating accumulator. Some
memory reference and special memory reference instructions have

Second Edition 34

J)

J

)

I MODE

register-to-register and/or immediate forms. Such instructions are so
identified in this I Mode Instruction Dictionary.

The immediate form of a memory reference instruction has a 16-bit
literal in bits 17 to 32 instead of a 16-bit displacement.
Register-to-register forms are 16 bits long, since they have no
displacement. Bits 7 to 9 specify the destination register and bits 12
to 14 specify the source register.

The immediate form of a special memory reference instruction has a
16-bit encoding in bits 17 to 32 instead of a 16-bit displacement. The
register-to-register form is 16 bits long, since it has no
displacement. Bit 8 specifies the floating-point destination
accumulator and bits 12 to 14 specify the index register or the
floating-point source register (in bit 13).

Generic AP instructions have a generic format (where bits 10 to 16
contain the opcode extension) followed by a 32-bit address pointer.

Register generic instructions are 16 bits long and have an opcode in
bits 10 to 16. The value of bits 1 to 6 is 011000; Dbits 7 to 9
specify a general register.

Register generic branch instructions are 32 bits long and have an
opcode in bits 10 to 16. The value of bits 1 to 6 is 00100; bits 7 to
9 specify a general register. Bits 17 to 32 contain a displacement.

Generic A and B instructions that do not reference the A, B, E, or L
registers are also used in I Mode. See Chapter 2, Figure 2-1 for the
format of these instructions. Instructions defined in I mode for this
class are included in this instruction dictionary.

1 67 91011 12 14 15 16 17 32

| OPCODE | DEST REG | TM | SOURCE REG CR INDEX | BR | DISP |

I Mode General Memory Reference Format*

* This instruction type also has a register-to-register and
immediate form as explained in the text.

I Mode Instruction Formats
Figure 3-1

3-5 Second Edition

INSTRUCTION SETS GUIDE

l 2 34 6 7 8 g 1011 12 14 15 16 17 32

IO 1 OP 1 110 1 OP | DESF | OP | TM ISRC REG OR IIX!| BR | DISP |

I Mode Special Memory Reference (Floating Point) Format*

1 2 34 67 9101112 14 15 16 17 32

'110OP I 110 | OP | TM | REG CR INDEX | BR | DISPLACEMENT |

I Mode Special Memory Reference (General Register) Format

1 16

| GENERIC OR REGISTER GENERIC |

I BIT | I | O | BR | 00000000 | OFFSET I

I Mode Generic AP Format

1 67 910 16

| 011000 | REG | OPCCDE |

I Mode Register Generic Format

1 67 910 16 17 32

| 001000 | REG | OPCODE | DISPLACEMENT |

I Mode Register Generic Branch Format

* This instruction type also has a register-to-register and

|
|
|
|
|
|
I
I
|
I
I
|
|
I
I
|
[
|
I
I
[
|
[17 20 21 R 233 24 25 32 33 48
[
[
|
|
|
|
|
I
[
|
|
|
I
|
|
I
!
!
|
|
[
|
|
|
| immediate form as explained in the text.
!

I Mode Instruction Formats
Figure 3-1 (continued)

Second Edition 3-6

J

J

)

I MODE

INSTRUCTIONS

P A R,address
Add Fullword
000010 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of the
specified R. Stores the results in the specified R.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**3l, an integer exception occurs. If
the sun is less than or equal to -(2**31)-1, an integer exception
occurs.

Vhen an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> ABQ r,address
Add Entry to Bottom of Queue
O11000R31011100
AP\32

Adds the entry contained in the specified r to the bottom of the queue
referenced by the AP. (AP points to the queue’'s QCB.) Sets the
condition codes to reflect BQ if the queue was full, or to NE if not
full. ILeaves the values of CBIT and LINK unchanged.

3-7 Second Edition

INSTRUCTION SETS GUIDE

P> ACP destination-R,source-R [sme & combovs CHAR. O/
Add C Pointer]

10110 1IR\3 TM\2 SR\3 BR\2

Adds the two's complement number contained in the specified source R to
the C language pointer in the specified destination R. Stores the
result in the C pointer in the same destination R. Ieaves the values
of the CBIT, LINK, and condition codes unchanged.

Addition is done to segment-number | offset byte, producing a new pointer
with an updated segment-number!offsetibyte. Adding a positive integer
that causes the segment-number field to overflow will modify the ring
field. Adding a negative integer that causes the segment-number field
to underflow will also modify the ring field. R contents that do not
cause the segment number to overflow will not modify the ring field.
No overflow is detected or indicated.

Note

While of the memory referencing form, this instruction is only
defined for register-to-register and immediate address
formation. (See Appendix B.)

If ACP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p ADR R
Add LINK to Register
O11000R30001100

Adds the contents of LINK to the contents of R and stores the result in
R. If there is an overflow, an integer exception occurs. If no
integer exception occurs, CBIT is reset to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

Second Edition 3-8

J I

J

I MODE

P> AH r,address
Add Halfword
001010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by EA and adds them to the contents of the
specified r. Stores the results in the specified r.

If the resulting sum is 1less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

¥hen an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 16 bits are the 16 ISBs of the
correct answer (that needs 17 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> ATIP R,address
Add Indirect Pointer
11110 1IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Adds the value contained in the specified R to the 32-bit wvalue
contained in the 1location specified by EA. Stores the result in the
specified R. Checks these contents for a pointer fault.

This pointer fault is generated when the contents of the memory
location to be added to the specified R contain a pointer fault (bit 1
contains 1). .

If this pointer fault occurs, the pointer to the memory 1location is
saved in FAITR (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FOODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

3-9 Second Edition

INSTRUCTION SETS GUIDE

An overflow produces an integer exception. If no integer exception
occurs, CBIT is reset to 0. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

Note

ATP should weaken the ring field against the ring field of the
effective address. This is not done on some current
processors, but will be done on all future processors.

If ATP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P> ARFA far,R
Add Register to FAR
O11000R\WB3111FAROO01

Adds the bit address in the specified R to the contents of the
specified FAR. Stores the result in the FAR. ILeaves the values of
CBIT and LINK indeterminate. ILeawves the values of the condition codes
unchanged.

P> ARGT
Argument Transfer
000C0000110000101

Transfers arguments from a source procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination procedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments are stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of CBIT, LINK, and the cordition codes are
indeterminate.

ARGT must be the first executable instruction in any destination

procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will

Second Edition 3-10

) J

J

J

3

)

I MODE

destroy the return pointer for PCL, producing indeterminate results.
For information about argument transfers, refer to the procedure calls
section in Chapter 8 of the System Architecture Reference Guide.

P ATQ r,address
Add Entry to Top of Queue
0O11000R\31011101
AP\32

Adds the entry contained in the specified r to the top of the queue
referenced by the AP. (AP points to the queue’'s QCB.) Sets the
cordition codes to reflect EQ if the queue was full, or to NE if not
full. ILeaves the values of CBIT and LINK unchanged.

3-11 Second Edition

INSTRUCTION SETS GUIDE

P> BCEQ address
Branch on Condition Code EQ
1100001110000010
AITRESS\ 16

If the condition codes reflect equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. ILeawves the
values of CBIT, LINK, and the condition codes unchanged.

P> BOGE address
Branch on Condition Code GE
1100001110000101
ATTRESS\ 16

If the condition codes reflect greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Ieaves the values of CBIT, LINK, and the condition codes

unchanged.

P> BOGT address
Branch on Condition Code GT
1100001110000001
AITRESS\ 16

If the condition codes reflect greater than O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCLE address
Branch on Condition Code LE
1100001110000000
ATTRESS\16

If the condition codes reflect less than or equal to O, the imstruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, emecution continues with the next instruction.
Ieaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 3-12

J

)

I MODE

P> BCLT address
Branch on Condition Code LT
1100001110000100
ATTRESS\ 16

If the condition codes reflect less than O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BONE address
Branch on Condition Code NE
1100001110000011
ATTRESS\ 16

If the condition codes reflect not equal to O, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
cordition, execution continues with the next instruction. ILeaves the
values of CBIT, LINK, and the condition codes unchanged.

P> BCR address
Branch on CBIT Reset to O
1100001111000101
ATTRESS\16

If CBIT has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. ILeaves the values of CBIT, LINK, and the condition codes

unchanged.

P> BCS address
Branch on CBIT Set to 1
1100001111000100
ADTRESS\ 16

If CBIT has the wvalue 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value O, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

3-13 Second Edition

INSTRUCTION SETS GUIDE

P EFEQ f,address
Branch on Floating Accumulator Equal to O
0O010000F01010010
ATTRESS\ 16

If the specified floating accumilator contents are equal to O, BFEQ
loads the specified address (in the current segment) into the program
counter; if they are not equal to O, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) Ieaves the LINK and CBIT unchanged. BFEQ works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to O and less than 0. (See the
System Architecture Reference Guide, Chapter 6.)

P BFGE f,address
Branch on Floating Accumulator Greater Than or Equal to O
0O010000F01010101
ATDRESS\ 16

If the specified floating accumulator contents are greater than or
equal to O, BFGE loads the specified address (in the current segment)
into the program counter; if they are less than O, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) ILeaves the LINK and CBIT unchanged. BFGE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

P> BFGT f,address
Branch on Floating Accumulator Greater Than O
0O0O10000F01010001
ATDRESS\ 16

If the specified floating accumulator contents are greater than O, BFGT
loads the specified address (in the current segment) into the program
counter; if they are less than or equal to O, execution continues with
the next instruction. The condition codes reflect the comparison.
(See Appendix A.) [ILeaves the LINK and CBIT unchanged. BFGT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

Second Edition 3-14

' J

J

J

h)

)

I MODE

P> BFLE f,address
Branch on Floating Accumulator Less Than or Equal to O
0O0l10000F01010000
AITRESS\ 16

If the specified floating accumulator contents are less than or equal
to O, BFLE loads the specified address (in the current segment) into
the program counter; if they are greater than 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Apperdix A.) Ileaves the LINK and CBIT unchanged. BFLE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See Chapter 6 in the System Architecture Reference Guide.)

P> BFLT f,address
Branch on Floating Accumulator ILess Than O
0010000F010101C00
ATDRESS\ 16

If the specified floating accumulator contents are less than O, BEFLT
loads the specified address (in the current segment) into the program
counter; 1if they are greater than or equal to O, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BFLT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than O.
(See the System Architecture Reference Guide, Chapter 6.)

P> BFNE f,address
Branch on Floating Accumulator Not Equal to O
0010000F0O01010011
ATDRESS\ 16

If the specified floating accumulator contents are not equal to O, BFNE
loads the specified address (in the current segment) into the program
counter; 1if they are equal to O, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) Leaves the LINK and CBIT unchanged. BFNE works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to O and less than 0. (See the
System Architecture Reference Guide, Chapter 6.)

3-15 Second Edition

INSTRUCTION SETS GUIDE

P EBHDL r,address
Branch on Half Register Decremented by 1
O0O1000RWB31100100
ADTRESS\ 16

Decrements the specified r contents by 1 and stores the result in the
specified r. If the decremented value is not equal to O, BHD1l loads
the specified address (in the current segment) into the program
counter. If that value is equal to O, execution continues with the
next instruction. ILeaves the CBIT, LINK, and condition codes
unchanged.

P> EHD2 r,address |
Branch on Half Register Decremented By 2
OO0O1000RWB31100101
ATTRESS\ 16

Decrements the specified r contents by 2 and stores the result in the
specified r. If the decremented value is not equal to O, BHDR loads
the specified address (in the current segment) into the program
counter. If that wvalue is equal to O, execution continues with the
next instruction. Ieaves the CBIT, LINK, and condition codes
unchanged.

P> EBHD4 r,address
Branch on Half Register Decremented By 4
OO0O1000R31100110
ADTRESS\ 16

Decrements the specified r contents by 4 and stores the result in the
specified r. If the decremented value is not equal to O, BEHDZ Loads
the specified address (in the current segment) into the program
counter. If that value is equal to O, execution continues with the
next instruction. Ieaves the CBIT, LINK, and condition codes
unchanged.

P> BHEQ r,address
Branch on Half Register Equal To O
O0O1000RWB31001010
ADDRESS\ 16

If the specified r contents are equal to O, BHEQ loads the specified
address (in the current segment) into the program counter; if they are
not equal to O, execution continues with the next instruction. Sets
the condition codes to the comparison result. (See Appendix A.)
Leaves the CBIT and LINK unchanged.

Second Edition 3-16

J

J

)

I MODE

Branch on Half Register Greater Than or Equal To O
OO0O1000RWB31001101
ATTRESS\ 16

If the specified r contents are greater than or equal to O, BHGE loads
the specified address (in the current segment) into the program
counter; if they are less than O, execution continues with the next
instruction. Sets the condition codes to the result comparison. (See
Appendix A.) Leaves the CBIT and LINK unchanged.

P> EHGT r,address
Branch on Half Register Greater Than O
O0O1000R31001001
ATTRESS\16

If the contents of the specified r are greater than O, the instruction
loads the specified address into the program counter. This address
mist be within the current segment. If the contents of r are less than
or equal to O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

P> EHI1 r,address
Branch on Half Register Incremented by 1
OO1000RWB1100000
ATDRESS\16

Increments the contents of the specified r by 1 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

D> EHI2 r,address
Branch on Half Register Incremented by 2
OO1000R31100001
ATTRESS\16

Increments the contents of the specified r by 2 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the the specified address into the program counter.
This address must be within the current segment. If the incremented
value is equal to O, execution continues with the next instruction.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

3-17 Second Edition

INSTRUCTION SETS GUIDE

P> EBHI4 r,address
Branch on Half Register Incremented by 4
OO0O1000RWB31100010
ATTRESS\16

Increments the contents of the specified r by 4 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> EHLE r,address
Branch on Half Register ILess Than or Equal to O
O0O1000RWB31001000
ATDRESS\ 16

If the contents of the specified r are less than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
greater than O, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
ILeaves the values of CBIT and LINK unchanged.

P> BHLT r,address
Branch on Half Register Less Than O
OO1000RW31001100
ATIDRESS\ 16

If the contents of the specified r are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are greater
than or equal to O, execution continues with the next instruction.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the values of CBIT and LINK unchanged.

P> EINE r,address
Branch on Half Register Not Equal To O
OO1000RWB31001011
AITRESS\16

If the contents of the specified r are not equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition 3-18

J

J

N

“N

h)

I MODE

P> EIR address
Branch on LINK Reset to O
1100001111000111
ATTRESS\ 16

If LTNK has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. leaves the values of CBIT, LINK, and the condition codes

unchanged.

P EBLS address
Branch on LINK Set to 1
1100001111000110
ATTRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value O, execution continues with the next
instruction. ILeaves the values of CBIT, LINK, and the condition codes
unchanged.

P BMEQ address
Branch on Magnitude Condition EQ
1100001110000010
ATTRESS\ 16

If the condition codes indicate magnitude equal to O, the instruction
loads the specified address into the program counter, like BCEQ. BMEQ
is intended for magnitude comparisons after a compare or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Ieaves the wvalues of CBIT, LINK, and the
condition codes unchanged.

P> BMGE address
Branch on Magnitude Condition GE
1100001111000110
ATTRESS\ 16

If LINK has the wvalue 1, the instruction loads the specified address
into the program counter, like BIS. BMGE is used to determine if the
magnitude of the register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
mst be within the current segment. If LINK has the value O, execution
continues with the next instruction. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

3-19 Second Edition

INSTRUCTION SETS GUIDE

P> BMGT address
Branch on Magnitude Condition GT
1100001111001000
ATDRESS\ 16

If LINK is 1 and the condition codes reflect not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Ieaves the
values of CBIT, LINK, and the condition codes unchanged.

P> EBMIE address
Branch on Magnitude Condition LE
1100001111001001
ATTRESS\16

If LINK is O or the condition codes reflect equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Leawves the values of
CBIT, LINK, and the condition codes unchanged.

P> BMLT address
Branch on Magnitude Condition LT
1100001111000111
ATTRESS\16

If LINK has the value O, the instruction loads the specified address
into the program counter, like BIR. BMLT is used to determine if the
magnitude of the register quantity is less than the memory quantity
after a compare or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

P> BMNE address
Branch on Magnitude Condition NE
1100001110000011 (Vmode form)
ATTRESS\ 16

If the condition codes indicate magnitude not equal to O, the
instruction loads the specified address into the program counter, 1like
BCNE. BMNE is intended for magnitude comparisons after a compare or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

Second Edition 3-20

J J

)

I MODE

P> ERER R,bit #,address
Branch on Register Bit Reset
0OO0O1000R\3 01 BIT\5
ATTRESS\ 16

Bits 12 to 16 of the instruction contain a value between 'O0 and '37.
This value specifies the bit position in the register to be tested. A
value of 'O0 corresponds to bit 1; ‘Ol, bit 2; and so on.

If the specified bit position contains O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains 1,
execution continues with the next instruction. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

P> ERBS R,bit #,address
Branch on Register Bit Set
001000R\30O0 BIT\S
ATTRESS\16

Bits 12 to 16 of the instruction contain a value between ‘00 and '37.
This value specifies the bit position in the register to be tested. A
value of ‘OO0 corresponds to bit 1; ’'Ol, bit 2; and so on.

If the specified bit position contains 1, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains O,
execution continues with the next instruction. ILeaves the values of
CBIT, LINK, and the condition codes unchanged.

P> ERD1 R,address
Branch on Register Decremented by 1
O0O1000RWB1011100
ADTRESS\ 16

Decrements the contents of the specified R by 1 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. Ieaves
the values of CBIT, LINK, and the condition codes unchanged.

3-21 Second Edition

INSTRUCTION SETS GUIDE

P> BRI R,address
Branch on Register Decremented by 2
O0O1000R31011101
ATTRESS\ 16

Decrements the contents of the specified R by 2 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BRD4 R,address
Branch on Register Decremented by 4
O0O1000R31011110
ADDRESS\ 16

Decrements the contents of the specified R by 4 and stores the result
in the specified R. If the decremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P> EREQ R,address
Branch on Register Equal to O
O0O1000R31000010
ATIDRESS\ 16

If the contents of the specified R are equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are not equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

P> ERGE R,address
Branch on Register Greater Than or Equal to O
O0O1000R\31000101
ATDRESS\ 16

If the contents of the specified R are greater than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are less
than O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Ieaves the values of CBIT and LINK unchanged.

Second Edition 3-22

J

J

D

I MODE

P> ERGT R,address
Branch on Register Greater Than O
O0O1000R31000001
ATDRESS\ 16

If the contents of the specified R are greater than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are less than or
equal to O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Ieaves the values of CBIT and LINK unchanged.

P> ERI1 R,address
Branch on Register Incremented by 1
O0O1000R31011000
ATTRESS\16

Increments the contents of the specified R by 1 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. ILeaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BRI2 R,address
Branch on Register Incremented by 2
0O01000R31011001
ATTRESS\ 16

Increments the contents of the specified R by 2 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P> BRI4 R,address
Branch on Register Incremented by 4
O0O1000RWB31011010
ATTRESS\ 16

Increments the contents of the specified R by 4 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

3-23 Second Edition

INSTRUCTION SETS GUIDE

P> BRIE R,address
Branch on Register Less Than or Equal to O
OO0O1000R31000000
ATDRESS\16

If the contents of the specified R are less than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are
greater than 0, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

P> ERLIT R,address
Branch on Register Less Than O
OO0O100O0OR31000100
ADDRESS\16

If the contents of the specified R are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are greater than
or equal to O, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

P> ERNE R,address
Branch on Register Not Equal to O
O0O1000R31000011
ADDRESS\16

If the contents of the specified R are not equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are equal to O,
execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition 3-24

J

J

I MODE

P> C R,address
Fullword
11000 1DR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the 32-bit value
contained in the specified R to the 32-bit value contained in the
location specified by EA. The comparison is done by subtracting the
contents of the the memory location from the contents of the register.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Ieaves the value of CBIT unchanged. LINK contains the
carry-out bit.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> CAIF address
Call Fault Handler
0000000111000101
AP\32

The address pointer in this instruction points to the ECB of a fault
routine. CALF uses this pointer to transfer control to the fault
routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

P CCP destination-R,source-R

Campare C Pointer
10010 1IR\3 TM\2 SR\3 BR\2

Campares the C language pointer in the specified source R to the C
language pointer in the specified destination R. Ignores the pointer
fault and ring bits during the comparison. ILeaves the values of CBIT
and LINK unchanged. Sets the condition codes to the outcome of the
camparison as follows.

Condition cC
Contents of destination-R > contents of source-R. GT
Contents of destination-R = contents of source-R. joA)
Contents of destination-R < contents of source-R. LT

3-25 Second Edition

INSTRUCTION SETS GUITE

Note

¥hile of the memory referencing form, the CCP instruction is
only defined for register-to-register address formation. (See
Appendix B of the Instruction Sets Guide.) The immediate form
of this instruction is undefined, but the preferred
implementation is a UII for the immediate form.

If CCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P GTr
Computed GOTO
0O11000R30010110
INTEGER N\16
BRANCH AITRESS 1\16

BRANCH ATTRESS N-1\16

If the contents of the specified r are greater than or equal to 1 and
less than the specified integer N that follows the opcode, the
instruction adds the contents of r to the contents of the program
counter to form an address. (The program counter points to the integer
N following the opcode.) Loads the contents of the location specified
by this address into the program counter. If the contents of r are not
within this range, the instruction adds integer N to the contents of
the program counter and stores the result in the program counter. Each
of the branch addresses following the instruction specifies a location
within the current procedure segment. The values of CBIT, LINK, and
the condition codes are indeterminate.

P CH r,address
Compare Halfword
11100 1IR\3 TM\2 SR\? BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the value contained in
the specified r to the 16-bit value contained in the location specified
by EA. Ieaves the value of CBIT unchanged. LINK contains the
carry-out bit. The condition codes reflect the result of the

comparison. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

Second Edition 3-26

J

)

I MODE

CHS R
Change Sign
011000R30100000

Complements bit 1 of the specified R. ILeaves the values of CBIT, LINK,
and the condition codes unchanged.

p OMHr
Complement r
0O11000R\30100101

Forms the one’'s complement of the contents of the specified r by
inverting the value of each bit and stores the result in r. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> ORR
Complement R
011000R30100100

Forms the one’'s complement of the contents of the specified R by
inverting the value of each bit and stores the result in R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> ®RR
Clear R t0o O
011000R\30101110

Clears the specified R to 0. Ieaves the values of CBIT, LINK, and the
condition codes unchanged.

loads zeros into bits 1 to 8 of the specified R. ILeaves the values of
LINK, CBIT, and the condition codes unchanged.

P CRER R
Clear R High Byte 2 Right
0O11000R\30110011

Loads zeros into bits 9 to 16 of the specified R. ILeaves the values of
LTNK, CBIT, and the condition codes unchanged.

3-:7 Second Edition

INSTRUCTION SETS GUIDE

’C‘RHL.R
Clear R left Halfword
011000R\30101100

Clears bits 1 to 16 of the specified R to 0. Ieaves the values of
CBIT, LINK, and the condition codes unchanged.

Clear R Right Halfword
011000R30101101

Clears bits 17 to 32 of the specified R to 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P CSRR

Copy Sign
C11000R\30100001

Copies the value of bit 1 of the specified R into CBIT, and then loads

O into bit 1 of R. The value of LINK is indeterminate. Leaves the
cordition codes unchanged.

Second Edition 3-28

J

J

I MODE

P> D R,address
Divide Fullword
110010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 64-bit value
contained in the specified R and R+1 by the 32-bit value contained in
the location specified by EA. Stores the quotient in the specified R
and the remainder in R+l. Overflow may occur if the quotient is less
than -(2**31) or greater than (2**31)-1. Overflow and divide by O
cause an integer exception.

If no integer exception occurs, CBIT is reset to 0. The instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1; if bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

Note

R must specify an even register. This instruction also has a
register-to-register and an immediate form. See Appendix B for
more information.

p DELE f
Convert Single to Double Floating Point
0110000F01000110

Converts the single precision number in the specified floating-point
accumilator to a double precision one by zeroing bits 32 to 48 of the
floating-point accumilator. Stores the result in the floating-point
accumulator. Ieaves the values of CBIT, LINK, and the condition codes
unchanged. Overflow or underflow cannot occur.

p DCPR
Decrement C Pointer
0Ol11000RB31110000

Decrements the C language pointer in the specified R by 1 byte.
Decrementing a O offset reduces the segment number by 1. Decrementing
segment number O, offset O, byte O generates a pointer to the maximum
segment number, the maximum offset, and byte 0. ILeaves the CBIT, LINK,
and the condition codes unchanged. For C pointer details, see Chapter
1 and Appendix B of this guide.

3-29 Secord Edition

INSTRUCTION SETS GUIDE

Note

If DCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P IFA f,address
Double Floating Add
0011101F 1 T™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified DAC to the contents of the location specified by EA. Stores
the result in the DAC. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0. The values
of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P DFC f,address
Double Floating Compare
0OO0O01101F1TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified DAC to the contents of the location specified by EA. ILeaves
the values of CBIT and LINK unchanged. Sets the condition codes to the
outcome of the comparison.

Condition CcC
Contents of DAC > contents of location specified by EA. GT
Contents of DAC = contents of location specified by EA. R
Contents of DAC < contents of location specified by EA. LT

On some processors, DFC works correctly only on normalized numbers as
follows. The comparison has a meximum of three sequential stages:

Second Edition 3-30

J

J

J

)

I MODE

first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,

resulting in a proper comparison.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p DFCM £
Double Floating Complement
0110000F0O01100100

Forms the two’'s complement of the double precision, floating-point
number contained in the specified DAC and normalizes it if necessary.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

P> DFD f,address
Double Floating Divide
0111100F 1 T™M\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified DAC by the contents of the location specified by EA.
Normalizes the quotient if necessary. Stores the result in the DAC.
An overflow or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

3-31 Second Edition

INSTRUCTION SETS GUIDE

P> DFL f,address
Double Floating Load
0001100F 1 T™2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Ioads the 64-bit contents of the
location specified by EA into the specified DAC without normalizing the
result. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

The IFL. instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P> DFM f,address
Double Floating Multiply
0101101F1T™\2 SR\3 BR\2
[DISPLACEMENT\16] -

Calculates an effective address, EA. Multiplies the 64-bit contents of
the location specified by EA by the contents of the specified DAC.
Normalizes the result if necessary. Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P IFS f,address
Double Floating Subtract
0101100F 1 T™2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the location specified by EA from the contents of the specified DAC.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

Second Edition 3-32

J

J

J

9

)

h)

I MODE

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains O, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The DFS instruction also has a register-to-register and an
immediate form. See Apperdix B for more information.

P> LFST f,address
Double Floating Point Store
0011100F1 T™M\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of the
specified DAC into the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

P> IH R,address
Divide Halfword
1110101IR\3 T™\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 32-bit dividend
contained in the specified R by the 16-bit value contained in the
location specified by EA. Stores the quotient in bits 1 to 16 of R and
the remainder in bits 17 to 32 of R. The sign of the remainder equals
the sign of the dividemd. If the quotient is less than -(2**15) or
greater than (2**15)-1, an overflow occurs and causes an integer
exception. If no integer exception occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

3-33 Second Edition

INSTRUCTION SETS GUIDE

Note

The DH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P mHlr

Decrement r by 1
011000R31011000

Decrements the contents of 1 by 1 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p mH2r
Decrement r by 2
0O11000R31011001

Decrements the contents of r by 2 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
THR instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P> IM address
Decrement Memory Fullword
110110000 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Subtracts 1 from the 32-bit integer contained in the specified location
and stores the result back in the specified location. Leaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

Second Edition 3-34

J

/

J

)

I MOCE

P> IMH address
Decrement Memory Halfword
111110000 T™\2 SR\3 BR\2
DISPLACEMENT\ 16

Subtracts 1 from the 16-bit integer contained in the specified location
and stores the result back in the specified location. Ieaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

P IR1 R
Decrement Register by 1
011000R31010100

Decrements the contents of R by 1 and stores the result in R. An
overflow causes an integer exception. If no integer exception occurs,
CBIT is reset to 0. LINK contains the value of the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p IR2 R
Decrement Register by 2
011000R31010101

Decrements the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. LINK contains the value of the
borrow bit. The condition codes reflect the result of the operation.

(See Apperdix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
IR2 instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P RN
Double Round From Quad
0100000011000000

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains O, the instruction ends. If bits 50 to 96 of
QAC are not zero, or bit 48 of QAC contains 1, the instruction adds the
value of bit 49 to that of bit 48 (unbiased round) and clears bits 49
to 96 of QAC to 0. If any other condition exists, no unbiased rounding

3-35 Second Edition

INSTRUCTION SETS GUIDE

occurs, but bits 49 to 96 of QAC are still cleared to 0. After any
rounding and clearing occurs, the instruction normalizes the result and
loads it into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p IRNM
Double Round From Quad Towards Negative Infinity
1100000101111001

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains O, or if bits 49 to 96 of QAC contain zeros,
the instruction ends. In any other case, the instruction clears bits
49 to 96 to 0, normalizes the result, and places it in bits 1 to 64 of

QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes are indeterm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>