
P r i m e » I n s t r u c t i o n S e t s G u i d e
Rev. 21.0

D0C9474-2LA

Instruction
Sets Guide

Second Edition

by

Marilyn Hammond

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

Copyright © 1987 ty Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS axe registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRBtEWAY, PRIMIX, PRISAM,
PST 100, PT25, PT45, PT65, PT200, PW153, PW200, FW250, RINCJNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
6350, 9650, 9655, 9750, 9755, 9950, 9955, and 9955II axe trademarks of
Prime Computer, Inc.

PRINTING HISTORY

First Edition (D0C9474-1LA) January 1985
Update 1 (UPD9474-11A) October 1985
Update 2 (UPD9474-12A) February 1986
Update 3 (UPD9474-13A) April 1986
Second Edition (D0C9474-2LA) August 1987

CREDITS

Editorial: Thelma Henner
Project Support: The CPU Group
illustration: Mingling Chang
Document Preparation: Kathy Normington
Production: Judy Gordon

i i

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of dcjcuments, or to obtain a catalog and price list:

U n i t e d S t a t e s C u s t o m e r s I n t e r n a t i o n a l

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subsidiary or distributor.

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime dCK3uments to:

Technical Publications Department
Prime (Itamputer, Inc.
500 Old Connecticut Path
Fra_-ti_ngham, MA 01701

i i i

Contents

A B O U T T H I S B O O K v i i

1 __NTRQDUCTION

A d d r e s s i n g M o d e s 1 - 1
Summary of Datatypes and Applicable

I n s t r u c t i o n s 1 - 5

2 S, R, AND V MODE

Int roduc t ion
Ins t ruc t i ons

2-1
2-7

3 I MODE

In t roduc t ion
Ins t ruc t i ons

3-1
3-7

APPENDICES

A Condition Code Information A-1

B Addressing Information B-l

Addressing Modes and Formats
Address Traps
Summary

B - l
B-18
B-22

C Ins t ruc t i on Summary Char ts C- l

D Hardware Considerations in Performance D-l

I n s t r u c t i o n W e i g h t s D - 2
Extensions to Instruction Weights D-7

E A r c h i v e d I n s t r u c t i o n s E - 1

F 2 4 5 5 I n s t r u c t i o n S e t s F - l

About
This Book

Prime's 50 Series™ family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6 3 5 0 ™ 9 9 5 5 I I ™ 9 9 5 5 ™ 9 9 5 0 ™
9 7 5 5 ™ 9 7 5 0 ™ 9 6 5 5 ™ 9 6 5 0 ™
2 7 5 5 ™ 2 6 5 5 ™ 2 5 5 0 ™ 2 4 5 0 ™
2 3 5 0 r M 2 2 5 0 ™ 8 5 0 ™ 7 5 0 ™
6 5 0 ™ 5 5 0 - 1 1 ™ 5 5 0 ™ 5 0 0 ™
4 5 0 ™ 1 4 5 0 ™ 4 0 0 ™ 3 5 0 ™
2 5 0 - 1 1 ™ 2 5 0 ™ 1 5 0 ™

The earlier processors are the 2250, 850, 750, 650, 550-11, 550, 500,
450/, 1450, 400, 350, 250-11, 250, and 150.

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently a__d
quickly. This document describes the 50 Series addressing modes and
their iiistructions from a functional point of view.

v i i

NOTES TO THE READER

Several groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
Series machines.

ORGANIZATION OF TEES GUIDE

This guide describes the instructions for S, R, V, and I addressing
modes. Each of these modes is introduced in Chapter 1. This chapter
also presents the 50 Series datatypes and their applicable
instructions. Chapters 2 and.3 contain detailed infonmation about each
instruction — name, format, mnemonic, and required operands — and a
complete description of each of the instruction's actions.

Chapters 1 through 3 may be summarized as follows:
• Chapter 1 contains brief descriptions of S, R, V, and I addressing

modes as well as a summary of datatypes with applicable
instructions.

• Chapter 2 is a dictionary of instructions executable in S, R, and V
modes.

• Chapter 3 is a dictionary of instructions executable in I mode.

Appendix A discusses the condition codes and their interpretation.

Appendix B presents tables of addressing information.

Appendix C contains summary charts of the instructions.

Appendix D discusses hardware considerations in performance and
provides tables of relative instruction weights.

Appendix E has those instructions that have been archived.

Appendix F discusses the instructions sets in relation to the 2455.

V l l l

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in conmand formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

C o n v e n t i o n E x p l a n a t i o n

UPPERCASE In command formats, words
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in uppercase.

Example

CRL

lowercase In command formats, words
in lowercase indicate vari
ables for which you must
substitute a suitable value.

LDA address

Brackets
[]

Brackets enclose an optional
i tem.

[DISP__ACEMENT\16]

Apostrophe An apostrophe preceding a
number indicates that the
number is in octal.

'200

I X

Introduction

This chapter briefly describes the S, R, V, and I addressing modes as
well as introducing their data representations. Each datatype
operation is listed with its S, R, V, and I mode instigations.

AIXRESSING MODES

The 50 Series prooessors support four addressing modes, each of which
forms addresses differently. Depending on the program and personal
preference, one or two of these modes may be more useful than another.
The three most important modes are:

• V, or virtual

• I, or general register

• R, or relative

The fourth mode — S, or sectored, mode — is supported for historical
reasons.

1 - 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that I mode long operations can use.) The index registers axe
specified by the souroe register field. General register 0, however,
cannot be used for indexing.

General register relative (GRR) is an addressing capability added to
321 mode that speeds up big array accesses and often gives the effect
of using general registers as base registers. (This is sometimes
called IX mode.) The offset is formed in GRR by adding the
displacement to bits 17 to 32 of the source register field. GRR is
used by the I mode instructions AIP and LIP. (GRR is not available for
the earlier processors listed in "About This Book".)

The C language pointer is used by the I mode instructions ACP, OCP,
DCP, ICP, LOC, SOC, and TGNP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains 0, it indicates that bits 1 to 8 (the left
tyte) of an address contain the character to be used; when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
character. A null pointer is represented by a 0 in bits 4 through 32.
(The C language pointer and its instructions axe not available for the
earlier processors listed in "About This Book".)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the souroe of the B bit, software depends on finding it
reset to zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation
when the souroe of the segment is a base register; otherwise it will
copy bit 4.

S e c o n d E d i t i o n 1 - 2

INlW_OJCTICN

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector 0 starts on location 0 and ends on location '777; Sector 1
begins on location '1000 and ends on location '1777; and so on.

An R mode instruction can reference any location in Sector 0, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is 0, the
instruction can only reference locations in Sector 0. When S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC - '360 to
PC + '377, inclusive.

Note that an R mode instruction that specifies a location in the range
PC - '361 to PC - '400, inclusive, selects a special addressing code,
such as stack register.

S Mode

Like R mode instructions, S mode instructions contain a sector bit.
When S is 0, references axe to Sector 0. When S is 1, however,
references axe only to those locations within the sector containing the
instruct ion.

S mode is a holdover from early Prime machines that were based on the
Honeywell 316 and 516 minicomputers. When operating in S mode, the 50
Series processors act exactly as these early machines do.

Summary of Addressing Modes

Table 1-1 summarizes addressing information about S, R, V, and I modes.
For further information, see Chapter 3 of the System Architecture
Reference Guide.

1 - 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 1-1
Summary of Addressing Modes

i Mode Address
Length

Addressing Range # Index
Regs

Ind i rec t i on !
L e v e l s I

I 16S direct 14 bits 1024 halfwords One
l 16S indirect 14 bits 16K halfwords One M u l t i p l e I

l 32S direct 15 bits 1024 halfwords One
I 32S indirect 15 bits 32K halfwords One M u l t i p l e I

l 32R direct 15 bits 1008 halfwords One
1 32R indirect 15 bits 32K halfwords One M u l t i p l e I

I 64R direct 16 bits 1008 halfwords One
I 64R indirect 16 bits 64K halfwords One O n e I

1 64V 16-bit
I i n s t r u c t i o n s

16 bits 64K halfwords:
+256 SB relative
+256 LB relative
+/-256 PC relative
+512 PB absolute

One O n e I

1 64V 32-bit
1 i n s t r u c t i o n s

28 bits 4 segments* Two O n e I

l 64V indirect 28 bits 4096 segments* Two O n e i

1 321 all 28 bits 12 segments*
with GRR**

Seven O n e i

I 32T indirect 28 bits 4096 segments* Seven O n e I

* All segments contain 128 Kbytes.
** Four segments for the 2250 and earlier processors because they

have no (3RR capability.

Second Edition 1-4

INTRCDUCTICN

SUMMARY QF DATATYPES AND APPLICABLE INSTRUCTIONS

The 50 Series systems support several data representations. These
representations fall into the major groups:

• Fixed-point data

• Floating-point numbers

• Decimal integers

• Character strings

t Queues

Tables 1-2 and 1-3 list the instructions applicable to the datatype
operations (other than queues) available in S, R, V, and I modes. The
body of each table shows which instructions perform a specific
operation on a specific datatype. For detailed information about each
instruction, refer to the instruction dictionaries in Chapters 2 and 3
of this manual. For further information about datatypes, see Chapter 6
of the System Architecture Reference Guide.

When using Tables 1-2 and 1-3, aa represents the set of arithmetic
conditions [EQ, GE, GT, LE, LT, NE ~T. Also, these tables do not
include instructions that operate on CBIT, KENK, the condition codes,
or queues.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
general register. In addition, A and B represent the S and R mode
16-bit registers; L and E represent the V mode 32-bit registers.

1 - 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 1-2
Summary of Datatypes and Applicable S, R, V Mode Instructions

I O p e r a t i o n
Size of Datatype (in Bits of Register)

16
(A)

31
(A/B)

32
(L)

64
(L/E)

32FP
(FAC)

64FP I128FPI
(DAC) 1 (QAC) 1

Deci
(-) i

l Load, from memory LDA DID LDL FLD DFLDI QFLD! XMVI

I Store to memory STA DST STL FST DFSTI QFSTI

I Add ADD DAD ADL FAD DFADI QFADI XADI

1 Subtract SUB DSB SEL FSB DFSBI QFSBI XADI

l Multiply MPY MPL FMP DFMPI QFMPI XMPI

I Divide DIV DVL FDV DFDVI QFDVI XDVI

1 Increment IRS,
A1A,
A2A

I Decrement SIA,
S2A

l AND ANA ANL
1 OR CRA
1 XCR ERA ERL
1 Complement CMA

i Compaxe CAS,
CAZ

Q-3 FCS DFCSl QPC,I
1 QFCSI

XCMI

I Logical test Laa LLaa LFaa L F a a l I

I Branch Baa BLaa BFaa B F a a l 1

I Logical left shift ALL LLL

1 Logical right shift ARL I_EL

I Arithmetic left shift ALS LL3 LLS

l Arithmetic right
1 s h i f t

ARS LRS IRS

i Rotate left shift AIR L__R

Second Edition 1-6

INTRCCWCTION

Table 1-2 (continued)
Summary of Datatypes and Applicable S, R, V Mode Instructions

1 O p e r a t i o n I
Size of Datatype (in Bits of Register) i

16 I
(A) 1

31 I
(A/B) 1

32 1 64 I32FP I64FP I128FPI Deel
(L) 1 (L/E) 1 (FAC) 1 (DAC) 1 (QAC) 1 (-) 1

I Rotate right shift I ARR 1 I £ R 1 1 I I I I
I C l e a x I CRA 1 CRL 1 C R L I C R L E 1 1 1 1 1

I d e a r l e f t I CAL 1 CRA 1 C R A 1 C R L 1 1 1 1 1

I Cleax right CAR 1 CRB 1 C R B 1 C R E 1 1 1 1 1

I Interchange halves ICA 1 IAB 1 I A B I I L E 1 1 1 1 1

I Interchange and i
I c l e a x l e f t I

ICL 1 XCA 1 X C A 1 1 1 1 I I

I Interchange and
I cleax right

ICR XCB X C B 1 1 1 1 I I

I Two's complement TCA TCL 1 1 FCM 1 DFCMI QFCMI 1

I Set sign SSM SSM S S M 1 1 1 1 I I

I Cleax sign SSP SSP S S P 1 1 1 1 I I

I Change sign CHS C H S 1 1 1 1 I I

1 Convert datatypes:

I Integer to
I float ing point

FLTA FLOT F L T L I 1 1 1 1 1

l Floating point
I to integer

INTA INT I N T L I 1 1 1 Q I N Q I 1
1 1 1 1 Q I Q R I 1

I Binary to decdmal XBTD X B T D I X B T D I 1 1 1 1

I Decimal to binary 1 XDTB 1 X D T B I X D T B I 1 1 1 1

I Position for integer
I d i v i d e

1 PIDA I PID I P I D L I P I D L I I I I 1

1 Position after
i m u l t i p l y

1 PIMA 1 PIM 1 P I M L I P I M L I 1 1 1 1

l Skips 1 Saa I 1 I F S a a l F S a a l 1 1

1-7 Second Edition

INSTRUCTION SETS GUIDE

Table 1-3
Summary of Datatypes and Applicable I Mode Instructions

Operation
Size of Datatype (in Bits of Register) i

16
(r)

32
(R)

64
(R/R+1)

32FP
(FAC)

64FP
(DAC)

128FP
(QAC)

Deel
(-) i

Load from memory LH FL DFL QFLD XMVI

Store to memory STH ST FST DFST QFST

Add AH FA DFA QFAD XADI

Subtract SH FS DFS QFSB XADI

M u l t i p l y MH FM DFM QFMP XMPI

Div ide DH FDV DFDV QFDV XDVI

Increment IMH,
J_H1,
IH2

IM,
IR1,
IR2

Decrement DMH,
DH1,
DH2

EM,
ER1,
DR2

AND NH

CR OH

XOR XH

Complement CMH CMR

Compaxe CH FC DPC QPC, XCMI

Logical test LHaa Laa LFaa LFaa

Branch BHaa ERaa BFaa BFaa

Logical shift SHL

Arithmetic shift SHA

Shift right 1 SHR1 SRI

Shift right 2 SHR2 SR2

Shift left 1 SHLl
LHLl

SL1

Second Edition 1-8

INTRUBJUCT1GN

Table 1-3
Summary of Datatypes and Applicable I Mode Instructions

I O p e r a t i o n I
Size of Datatype (in Bits of Register) I

16
(r)

32 1 64 I32FP I64FP I128FPI Deel
(R) 1 (R/R+1) 1 (FAC) 1 (DAC) 1 (QAC) 1 (-)l

l Shift left 2 SHL2
I_HL2

S L S 1 1 1 1 I I

l Shift left 3 LHL3

I R o t a t e i R O T 1 1 1 1 I I

i Cleax C R 1 I 1 1 1 1

I Cleax left GRBL C R H L I 1 1 1 1 1

I dear right CRBR C R H R I I 1 1 1 1

I Interchange halves IRB I R H 1 I 1 1 1 I I

I Interchange and
I cleax left

ICBL ICHLI

I Interchange and
I cleax right

ICBR I C H R I I I 1 1 1

I Two's complement TCH TC 1 1 PCM 1 DPCMI QPCMI 1

I Set sign SSM S S M 1 1 1 1 I I

I Clear sign SSP S S P 1 1 1 1 I I

I Change sign CHS C H S 1 1 1 1 I I

I Convert datatypes:
I Integer to
I floating point

FLTH F L T 1 1 1 1 1 1

I Floating point
I to integer

INTH I N T 1 I I I Q I N Q l 1
1 I I I Q I Q R I 1

I Binary to decimal

I Decimal to binary

I Position for integer
I d iv ide

XBTD

1 XDTB

1 PIDH

1 X B T D I X B T D I 1 1 1 1
1 1 (D A O O) I 1 1 1 1
1 X D T B I X D T B I 1 1 1 1
1 1 (D A O O) I 1 1 1 1
1 PID 1 PID 1 1 1 1 1

1 Position after multiply 1 PIMH 1 PIM 1 PIM 1 1 1 1 1

1-9 Second Edition

S, R, and V Mode

INTRQDUCTIQN

This chapter contains descriptions for all 50 Series instructions used
in S, R, and V modes. In the description of each instruction, you will
fi n d :

• The instruction mnemonic followed by any arguments.

• The name of the instruction.

• The bit format of the instruction.

• The modes for which the ijistruction is valid.

• Detailed information describing the instruction's action.

• Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 2-1 defines the dictionary notation.

2 - 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 2-1
Dictionary Notation

Symbol M e a n i n g I

A I T h e A r e g i s t e r . 1

AECRESS i Encompasses all the elements needed to specify an I
effective address. This term is used because various 1
addressing types require you to specify the elements 1
in different orders (such as indirect or pre- and I
p o s t - i n d e x i n g) . I

AP A d d r e s s p o i n t e r . I

B T h e 1 6 - b i t B r e g i s t e r . 1

BR B a s e r e g i s t e r . I

CB C l a s s b i t s . I

CBIT B i t 1 o f t h e k e y s . 1

DAC The double precision floating-point accumulator with 48 1
b i ts o f mant issa and 16 b i ts o f exponent . I

Displace
ment

The number of halfwords to be added to the base register 1
t o f o r m t h e e f f e c i v e a d d r e s s . i

E T h e 3 2 - b i t E r e g i s t e r . i

EA E f f e c t i v e a d d r e s s . I

F F l o a t i n g - p o i n t a c c u m u l a t o r . I

FAC The single precision floating-point accumulator with 48 1
b i ts o f mant issa and 16 b i ts o f exponent . I

FAR F i e l d a d d r e s s r e g i s t e r . 1

F E _ R 1 F i e l d l e n g t h r e g i s t e r . 1

Halfword 1 A 1 6 - b i t u n i t o f m e m o r y . 1

I l I n d i r e c t b i t . 1

L 1 T h e 3 2 - b i t L r e g i s t e r . 1

L I N K 1 Bit 3 of the keys. Not used in S and R modes. I

Offset The number of halfwords from the starting address of a 1
s e g m e n t . i

Second Edition 2-2

S, R, AND V MODE

Table 2-1 (continued)
Dictionary Notation

I Symbol i M e a n i n g i

I QAC The quad precision floating-point aocuirailator with 96 I
bits of mantissa and 16 bits of exponent. I

I skip Skip next 16-bit halfword before conti_miing execution. 1
I Word A 3 2 - b i t u n i t o f m e m o r y . 1

1 X T h e X r e g i s t e r (I n d e x i n g) . i

1 XB A u x i l i a r y b a s e r e g i s t e r . I
1 Y T h e Y r e g i s t e r (i n d e x i n g) . 1

I m\n Specifies the number of bits, n, occupied by field m. I
l [3 S p e c i fi e s a n o p t i o n a l a r g u m e n t . i

Resumable Instructions

Some assembly language instructions axe resumable. When an interrupt
is requested during the execution of an instruction, the prooessor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, axe too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the i_nteirupt occurred.
Table 2-2 lists the resumable assembly language instructions.

Table 2-2
Resumable Instructions

2-3 Second Edition

INSTRUCTION SETS GUIDE

These instructions depend on the settings in certain registers to
determine whether they axe being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
so modified axe noted per instruction description.

Storing Data Into the V and I Mode Instruction Stream
For the 6350 and 9750 to 9955 II, you must wait five instructions
before executing data after any instruction that stores data into
memory. If in doubt about the next five instructions (temporally) to
be executed, use a mode change instruction to the current addressing
mode, such as E64V, to allow the stored data to be executed. The rest
of the 50 Series has no such restriction.

Instruction Formats

All S, R, and V mode instructions belong to one of the following
instruction types:

• S and R Mode Memory Reference, Short

• V Mode Memory Reference, Short

• R Mode Memory Reference, Long

• V Mode Memory Reference, Long

• V Mode Generic AP (Address Pointer)

• S, R, and V Mode Generic Type A

t S, R, and V Mode Generic Type B

• S, R, and V Mode Shift

• S, R, and V Mode Skip

The format of each instruction type is shown in Figure 2-1.

Short and long memory reference instructions have an opcode in bits 3
to 6. The value of this opcode ranges from 1 to '17, inclusive, with
the exception of '14, which is reserved for I/O. For opcode '15, the X
bit is paxt of the opcode.

In addition, long memory reference instructions have an opcode
extension contained in bits 13 to 14. Generic AP instructions have a
generic A or B format (where bits 7 to 16 contain the opcode extension)
followed by a 32-bit address pointer.

S e c o n d E d i t i o n 2 - 4

S, R, AND V MODE

Generic A and B, shift, and skip instructions are 16 bits long, all of
which form an opcode. The values of bits 1 and 2 d^teimine the basic
instruction type: 11 for Generic A, 00 for Generic B, 01 for shifts,
and 10 for skips. Bits 3 to 6 contain 0. Bits 7 to 16 contain an
opcode extension. For shifts, bits 10 to 16 of the opcode extension
contain the two's complement of the number of shifts to perform.

1 2 3 6 7 1 6

I I I X I OP I DISPLACEMENT I

S and R Mode Memory Reference, Short

1 2 3 6 7 8 1 6

I I I X I OP I 1 I DISPLACEMENT I

V Memory Mode Reference, Short

1 2 3 6 7 1 2 1 3 1 4 1 5 1 6 1 7 3 2

I I I X I OPCODE I 110000 I OPEX I CB I [OPTIONAL DISP] I

R Mode Memory Reference, Long (Extended) Format

1 2 3 6 7 1 1 1 2 1 3 1 4 1 5 1 6 1 7 3 2

I I I X I OPCODE I 11000 I Y I OPEX I BR I DISPLACEMENT I

3 3 4 8

I AtOffiNT CODE* I

V Mode Memory Reference, Long Displacement Format

Tor quad operations only.

S, R, and V Mode Instruction Formats
Figure 2-1

2-5 Second Edition

INSTRUCTION SETS GUIDE

1 1 6

I GENERIC A CR B I

1 7 2 0 2 1 2 2 2 3 2 4 2 5 3 2 3 3 4 8

BIT I I I 0 I BR I 00000000 I OFFSET I

Generic AP Format

1 6 7 1 6

I 110000 I OPCODE EXT I

S, R, V Modes Generic A Format

1 6 7 1 6

l 000000 I OPCODE EXT I

S, R, V Modes Generic B Format

1 6 7 1 6

I 010000 I OPCODE EXT I

S, R, V Modes Shift Format

1 6 7 1 6

I 100000 I OPCODE EXT I

S, R, V Modes Skip Fonnat

S, R, and V Mode Instruction Formats
Figure 2-1 (continued)

S e c o n d E d i t i o n 2 - 6

S, R, AND V MODE

INSTRUCTIONS

!▶ A1A
Add 1 to A
IIOOOOIOIOOOOIIO (S, R, V mode form)

Adds 1 to the contents of A and stores the result in A. If A initially
contains (2**15)-1, an integer exception occurs and the ij__3truction
loads -(2**15) into A. If no integer exception occurs, the instruction
resets CBIT to 0. LINK contains the carry-out bit. The condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ A2A
Add 2 to A
1100000011000100 (S , R , V mode fo rm)

Adds 2 to the contents of A and stores the result in A. If A initially
contains (2**15)-1 or (2**15)-2, an integer exception occurs and the
instruction loads -(2**15)+1 or -(2**15), respectively, into A. If no
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)
If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the iJistruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ ABQ address
Add Entry to Bottom of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 (V m o d e f o r m)
AP\32

Adds the entry contained in A to the bottom of the queue referenced by
the AP. (AP points to the queue's QCB.) Sets the condition codes to
reflect EQ if the queue is full, or to NE if not full. Leaves the
values of CBIT and LINK unchanged. See Chapters 6 and 11 of the System
Architecture Reference Guide for more information about queues arvi
queue operations.

2 - 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ ACA
Add CBIT to A
1100001010001110 (S, R, V mode form)

Adds the value of CBIT to the contents of A and stores the result in A.
If the initial value of A is (2**15)-1 and CBIT is 1, the instruction
loads -(2**15) into A and an integer exception occurs. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)
If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds CBIT to bit 16 of A.

▶ ADD address
Add
IX011011000Y00 BR\2 (V mode l ong)
DISPLACEMENT\16

1X011011000000 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 1 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by EA and adds them to the contents of A.
Stores the results in A.

If the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results axe of the opposite sign
of the correct answer. In addition, the 16 bits axe the 16 LSBs of the
correct answer, which needs 17 bits to be correctly represented.

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the caxry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

S e c o n d E d i t i o n 2 - 8

S, R, AND V MODE

▶ ADL address
Add Long
I X O l l O l l O O O Y l l B R \ 2 (V m o d e f o r m)
DISFMC__MENT\16

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of L.
Stores the results in L.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception ocxjurs. If
the sum is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results axe of the opposite sign
of the correct answer. In addition, the 32 bits axe the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the caxry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

^ ADLL
Add LINK to L
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 (V m o d e f o r m)

Adds the contents of LINK to the contents of L and stores the result in
L. If the initial value of L is (2**31)-1 and LINK is 1, an integer
exception occurs. When an integer exception occurs, the results axe of
the opposite sign of the correct answer. In addition, the 32 bits axe
the 32 LSBs of the correct answer, which needs 33 bits to be correctly
represented.

If no integer exception occurs, the instruction resets CBIT to 0. LINK
contains the caxry-out bit. The condition codes reflect the result of
the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds the value of LINK to bit 32 of L.

2 - 9 S e c o n d E d i t i o n

INSTROCnCN SETS GUIDE

▶ ALFA far
Add L to FAR
O O O O O O I O 1100F001 (V mode format)

Adds the two's asntplement value contained in L to the offset and bit
number fields of FAR and stores the result in the specified FAR.
Leaves the values of LINK and CBIT iodeterininate. The values of the
condition codes remain unchanged.

Figure 2-2 shows the f onnat
instruct ion.

of L and the specified FAR for this

1 3 2

I Number of bits to add to address pointer I

Format of L

1 1 6 1 7 3 2 3 3 3 6

RING, SEC_MENT I OFFSET # I BIT # I

Format of FAR

L and FAR Format for ALFA
Figure 2-2

▶ ALL n
A Left Logical
0 1 0 0 0 0 1 1 0 0 N \ 6 (S, R, V mode form)

Shifts the contents of A left the appropriate number of bits, bringing
zeros in through bit 16 as needed. CBIT and LINK contain the value of
the last bit gshifted out; the values of the other bits shifted out axe
lost. Leaves the values of the condition codes unchanged. See Chapter
6 of the System Architecture Reference Guide for more information about
sh i f t s .

N contains the two's complement of the number of shifts to perform.
N contains 0, the instruction performs 64 shifts.

I f

Second Edition 2-10

S, R, AND V MODE

▶ AI_R n
A Left Rotate
0 1 0 0 0 0 1 1 1 0 N\6 (S, R, V mode form)

Shifts the contents of A to the left, rotating bit 1 into bit 16.
Stores the result in A. CBIT and LINK contain the value of the last
bit rotated into bit 16. Leaves the values of the condition codes
unchanged. See Chapter 6 of the System Architecture Reference Guide
for more information about shifts.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

▶ ALS n
A Arithmetic Left Shift
0 1 0 0 0 0 1 1 0 1 N\6 (S, R, V mode form)

Shifts the contents of A to the left, bringing zeros in on the right.
Stores the result in A. If bit 1, the sign bit, changes state, the
shift has resulted in a loss of significance and produces an integer
exception. If no integer exception occurs, the instruction resets CBIT
to 0. The value of LINK is ijyieteiminate. Leaves the values of the
condition codes unchanged. See Chapter 6 of the System Architecture
Reference Guide for more information about shifts.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ ANA address
AND to A
I X 0 0 1111 0 0 0 Y 0 0 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X001111000000 CB \2 (R mode l ong)
[DISPLACEMENTS]

I X 0 0 1 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Logically ANDs the 16-bit
contents of the location specified by EA with the contents of A, ar_d
stores the result in A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

2 - 1 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ ANL address
AND to A Long
IX001111000Y11 BR\2 (V mode form)

Calculates a 32-bit effective address, EA. Logically ANDs the 32-bit
contents of the location specified by EA with the contents of L, and
stores the result in L. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ ARGT
Argument Transfer
0 0 0 0 0 0 0 11 0 0 0 0 1 0 1 (V m o d e f o r m)

Transfers arguments from a souroe prooedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.

To perform a prooedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination procedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination prooedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments axe stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of CBIT, LINK, and the condition codes axe
indeterminate.

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will
destroy the return pointer for PCL, producing indeterminate results.

For more information about argument transfers, refer to the section on
prooedure calls in Chapter 8 of the System Architecture Reference
Guide.

▶ ARL n
A Right Logical
0 1 0 0 0 0 0 1 0 0 N\6 (S, R, V mode form)

Shifts the contents of A right the appropriate number of bits, bringing
zeros in through bit 1. CBIT and LINK contain the value of the last
bit shifted out; the values of the other bits shifted out axe lost.
Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

S e c o n d E d i t i o n 2 - 1 2

S, R, AND V MODE

▶ ARR n
A Right Rotate
0 1 0 0 0 0 0 1 1 0 N\6 (S, R, V mode form)

Shifts the contents of A to the right, rotating bit 16 into bit 1.
CBIT and LINK contain the value of the last bit rotated into bit 1.
Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

▶ ARS n
A Arithmetic Right Shift
0 1 0 0 0 0 0 1 0 1 N\6 (S, R, V mode form)

Shifts the contents of A to the right arithmetically, shifting copies
of bit 1, the sign bit, into the vacated bits. CBIT and LINK contain
the value of the last bit shifted out; the values of the other bits
shifted out axe lost. Leaves the values of the condition codes
unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

^ ATQ address
Add Entry to Top of Queue
11 0 0 0 0 1111 0 0 1111 (V m o d e f o r m)
AP\32

Adds the entry contained in A to the top of the queue referenced by the
AP. (AP points to the queue's QCB.) Sets the condition codes to
reflect EQ if the queue is full, or to NE if not full. Leaves the
values of CBIT and LINK unchanged. For more information about queues
and queue manipulation, see Chapters 6 and 11 of the System
Architecture Reference Guide.

2 - 1 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ BCEQ address
Branch on Condition Code EQ
11 0 0 0 0 111 0 0 0 0 0 1 0 (V m o d e f o r m)
ADDRESSS

If the condition codes reflect equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ BOGE address
Branch on Condition Code GE
11 0 0 0 0 111 0 0 0 0 1 0 1 (V m o d e f o r m)
ADDRESSS

If the condition codes reflect greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ BOGT address
Branch on Condition Code GT
11 0 0 0 0 111 0 0 0 0 0 0 1 (V m o d e f o r m)
ADDRESSS

If the condition codes reflect greater than 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ BCLE address
Branch on Condition Code LE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 (V m o d e f o r m)
ADDRESSS

If the condition codes reflect less than or equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n 2 - 1 4

S, R, AND V MODE

^ BCLT address
Branch on Condition Code LT
11 0 0 0 0 111 0 0 0 0 1 0 0 (V m o d e f o r m)
ADERESSS

If the condition codes reflect less than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ BCNE address
Branch on Condition Code NE
11 0 0 0 0 111 0 0 0 0 0 11 (V m o d e f o r m)
ADERESSS

If the condition codes reflect not equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ BCR address
Branch on CBIT Reset to 0
11 0 0 0 0 1111 0 0 0 1 0 1 (V m o d e f o r m)
ADERESSS

If CBIT has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

▶ BCS address
Branch on CBIT Set to 1
11 0 0 0 0 1111 0 0 0 1 0 0 (V m o d e f o r m)
ADERESSS

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

2 - 1 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ HDX address
Branch on Decremented X
11 0 0 0 0 0 111 0 111 0 0 (V m o d e f o r m)
ADDRESSS

Decrements the contents of X by one and stores the result in X. If the
decremented value is not equal to 0, loads the specified, address into
the program counter. This address must be within the current segment.
If the decremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

▶ EDY address
Branch on Decremented Y
11 0 0 0 0 0 111 0 1 0 1 0 0 (V m o d e f o r m)
ADDRESSS

Decrements the contents of Y by one and stores the result in Y. If the
decremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

▶ BBQ address
Branch on A Equal to 0
11 0 0 0 0 0 11 0 0 0 1 0 1 0 (V m o d e f o r m)
ADDRESSS

If the contents of A axe equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents axe not equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

^ BFEQ address
Branch on Floating Acjcumulator Equal to 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 (V m o d e f o r m)
ADDRESSS

If the contents of the floating accumulator axe equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents axe not equal to 0, execution continues with the
next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged.

S e c o n d E d i t i o n 2 - 1 6

S, R, AND V MODE

BFEQ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ BFGE address
Branch on Floating A<3Cumulator Greater Than or Equal to 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 (V m o d e f o r m)
ADDRESSS

If the contents of the floating accumulator are greater than or equal
to 0, the instruction loads the specified address into the program
counter. This address must be within the current segment. If the
floating accumulator contents axe less than 0, execution continues with
the next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged. BFGE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

^ BPGT address
Branch on Floating Acx_Jumulator Greater Than 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 (V m o d e f o r m)
ADERESSS

If the contents of the floating accumulator axe greater than 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. I f the floating
accumulator contents axe less than or equal to 0, execution continues
with the next instruction. The condition codes contain the result of
the comparison. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged. BPGT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

▶ BFLE address
Branch on Floating Accumulator Less Than or Equal to 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 (V m o d e f o r m)
ADDRESSS

If the floating accumulator contents axe less than or equal to 0, BFLE
loads the specified address into the program counter. This address
must be within the current segment. If the floating accumulator
contents are greater than 0, execution continues with the next
instruction. The condition codes contain the comparison result. (See
Appendix A.) Leaves the values of LINK and CBIT unchanged.

2 - 1 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

BFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ BFLT address
Branch on Floating Accumulator Less Than 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 (V m o d e f o r m)
ADDRESSS

If the contents of the floating accumulator axe less than 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are greater than or equal to 0, execution
continues with the next instruction. The condition codes contain the
result of the comparison. (See Appendix A.) Leaves the values of LINK
and CBIT unchanged. BFLT works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

▶ BFNE address
Branch on Floating A<3Cumulator Not Equal to 0
1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 (V m o d e f o r m)
ADERESSS

If the contents of the floating accumulator are not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents axe equal to 0, execution continues with the next
instruction. The condition codes contain the result of the comparison.
(See Appendix A. > Leaves the values of LINK and CBIT unchanged. BFNE
works correctly only on normalized or nearly normalized numbers because
it checks the first 32 fraction bits only for equal to zero and less
than zero. (See Chapter 6 in the System Architecture Reference Guide.)

^ BGE address
Branch on A Greater Than or Equal to 0
1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 (V m o d e f o r m)
ADDRESSS

If the contents of A axe greater than or equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the A contents are less than 0,
execution continues with the next __nstruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged. This instruction has the same
operation as ELGE.

S e c o n d E d i t i o n 2 - 1 8

S, R, AND V MODE

▶ BGT address
Branch on A Greater Than 0
11 0 0 0 0 0 11 0 0 0 1 0 0 1 (V m o d e f o r m)
ADDRESSS

If the contents of A axe greater than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents axe less than or equal
to 0, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

▶ BIX address
Branch on Incremented X
11 0 0 0 0 1 0 11 0 111 0 0 (V m o d e f o r m)
ADDRESSS

Increments the contents of X by one and stores the result in X. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

▶ BIY address
Branch on Incremented Y
11 0 0 0 0 1 0 11 0 1 0 1 0 0 (V m o d e f o r m)
ADDRESSS

Increments the contents of Y by one and stores the result in Y. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

▶ BLE address
Branch on A Less Than or Equal to 0
11 0 0 0 0 0 11 0 0 0 1 0 0 0 (V m o d e f o r m)
ADDRESSS

If the contents of A axe less than or equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the A contents axe greater than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

2 - 1 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ BLEQ address
Branch on L Equal to 0
11 0 0 0 0 0 111 0 0 0 0 1 0 (V m o d e f o r m)
ADDRESSS

If the contents of L are equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents axe not equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

▶ EDGE address
Branch on L Greater Than or Equal to 0
11 0 0 0 0 0 11 0 0 0 11 0 1 (V m o d e f o r m)
ADDRESSS

If the contents of L are greater than or equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the L contents axe less than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged. This instruction has the same
operation as BGE.

▶ ELGT address
Branch on L Greater Than 0
11 0 0 0 0 0 111 0 0 0 0 0 1 (V m o d e f o r m)
ADDRESSS

If the contents of L are greater than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are less than or equal
to 0, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

^ BLLE address
Branch on L Less Than or Equal to 0
11 0 0 0 0 0 111 0 0 0 0 0 0 (V m o d e f o r m)
ADERESSS

If the contents of L axe less than or equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the L contents axe greater than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

S e c o n d E d i t i o n 2 - 2 0

S, R, AND V MODE

^ BLLT address
Branch on L Less Than 0
l l O O O O O l l O O O l l O O (V m o d e f o r m)
ADERESSS

If the contents of L axe less than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are greater than or
equal to 0, execution continues with the next instruction. The
coi-dition codes contain the result of the comparison. (See Appendix
A.) Leaves the values of LINK and CBIT unchanged. This instruction
has the same operation has BLT.

▶ BLNE address
Branch on L Not Equal to 0
11 0 0 0 0 0 111 0 0 0 0 11 (V m o d e f o r m)
ADERESSS

If the contents of L axe not equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents axe equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

^ BLR address
Branch on LINK Reset to 0
11 0 0 0 0 1111 0 0 0 111 (V m o d e f o r m)
ADERESSS

If LINK has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ ELS address
Branch on LINK Set to 1
11 0 0 0 0 1111 0 0 0 11 0 (V m o d e f o r m)
ADERESSS

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and. the condition codes
unchanged.

2 - 2 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ BLT address
Branch on A Less Than 0
11 0 0 0 0 0 11 0 0 0 11 0 0 (V m o d e f o r m)
ADERESSS

If the contents of A are less than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents axe greater than or
equal to 0, execution continues with the next instruction. The
condition codes contain the result of the comparison. (See Appendix
A.) Leaves the values of LINK and CBIT unchanged. This instruction
has the same operation as BLLT.

^ BMEQ address
Branch on Magnitude Condition EQ
11 0 0 0 0 111 0 0 0 0 0 1 0 (V m o d e f o r m)
ADERESSS

If the condition codes indicate magnitude equal to 0, the instruction
loads the specified address into the program counter, like BCBQ. BMBQ
is intended for magnitude comparisons after a compaxe or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

▶ BM_-_E address
Branch on Magnitude Condition GE
11 0 0 0 0 1111 0 0 0 11 0 (V m o d e f o r m)
ADDRESSS

If LINK has the value 1, the instruction loads the specified address
into the program counter, like ELS. BMGE is used to determine if the
magnitude of the A/L register quantity was greater than or equal to the
memory quantity after a compaxe or subtract instruction. This address
must be within the current segment. If LINK has the value 0, execution
continues with the next instruction. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

S e c o n d E d i t i o n 2 - 2 2

S, R, AND V MODE

^ BM3T address
Branch on Magnitude Condition GT
11 0 0 0 0 1111 0 0 1 0 0 0 (V m o d e f o r m)
ADERESSS

If LINK is 1 and the condition codes reflect not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Leaves the
values of CBIT, LENK, and the condition codes unchanged.

^ BMLE address
Branch on Magnitude Condition LE
11 0 0 0 0 1111 0 0 1 0 0 1 (V m o d e f o r m)
ADDRESSS

If LINK is 0 or the condition codes reflect equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ BMLT address
Branch on Magnitude Condition LT
11 0 0 0 0 1111 0 0 0 111 (V m o d e f o r m)
ADDRESSS

If LINK has the value 0, the instruction loads the specified address
into the program counter, like BLR. BMLT is used to determine if the
magnitude of the A/L register quantity is less than the memory quantity
after a compaxe or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

▶ BMNE address
Branch on Magnitude Condition NE
11 0 0 0 0 111 0 0 0 0 0 11 (V m o d e f o r m)
ADDRESSS

If the condition codes indicate magnitude not equal to 0, the
instruction loads the specified address into the program counter, like
BCNE. BMNE is intended for magnitude comparisons after a compaxe or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

2 - 2 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUTDE

▶ BNE address
Branch on A Not Equal to 0
11 0 0 0 0 0 11 0 0 0 1 0 11 (V m o d e f o r m)
ADDRESSS

If the contents of A axe not equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the A contents axe equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

S e c o n d E d i t i o n 2 - 2 4

S, R, AND V MODE

^ GAL
Clear A Left Byte
1100001000101000 (S, R, V mode form)

Clears the left byte of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CALF address
Call Fault Handler
0 0 0 0 0 0 0 111 0 0 0 1 0 1 (V m o d e f o r m)
AP\32

The address pointer in this instruction is to the ECB of a fault
routine. The instruction uses this pointer to transfer control to the
fault routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
axe ij^-leterininate. See Chapter 10 of the System Architecture Reference
Guide for more information.

^ CAR
Cleax A Right Byte
1100001000100100 (S, R, V mode form)

Clears the right byte of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CAS address
Compare A and Skip
I X 1 0 0 111 0 0 0 Y 0 0 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X100111000000 CB\2 (R mode l ong)
[DISPLACEMENT\16]

I X 1 0 0 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. For 16-bit two's complement
signed values only, compares the contents of the A register to the
contents of the location specified by EA and skips as follows:

C o n d i t i o n S k i p

Contents of A > contents of EA. No skip.

Contents of A = contents of EA. Skip 16 bits (one halfword).

Contents of A < contents of EA. Skip 32 bits (two halfwords).

2 - 2 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

The value of CBIT is unchanged. LINK contains the caxry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

^ CAZ
Compaxe A With 0
1100000010001100 (S, R, V mode form)

Compares the contents of A with 0. Skips as follows:

C o n d i t i o n S k i p

C o n t e n t s o f A > 0 . N o s k i p .

Contents of A = 0. Skip 16 bits (one halfword).

Contents of A < 0. Skip 32 bits (two halfwoids).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

&> CEA
Compute Effective Address
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 (S , R m o d e f o r m)

Interprets the contents of A as a 16-bit indirect address in the
current addressing mode. Calculates an effective address, EA, from the
indirect address and loads the final address into A. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

)^ CGT
Computed GOTO
0 0 0 0 0 0 1 0 11 0 0 11 0 0 (V m o d e f o r m)
INTBGER NS
BRANCH ADDRESS IS

BRANCH ADDRESS (N-l)S

If the contents of A are greater than or equal to 1 and less than the
specified integer N that follows the opcode, the instruction adds the
contents of A to the contents of the program counter to form an
address. (The program counter points to the integer N following the
opcode.) Loads the contents of the location specified by this address
into the program counter. If the contents of A are not within this
range, the instruction adds integer N to the contents of the program
counter and stores the result in the program counter. The values of
CBIT, LINK, and the condition codes axe indetermiiiate.

S e c o n d E d i t i o n 2 - 2 6

S, R, AND V MOEE

Note

Each of the branch addresses following the CGT ijistruction
specifies a location within the current procedure segment.

^ CHS
Change Sign
1100000000010100 (S , R , V mode fo rm)

Complements bit 1 of A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ GL_S address
Compaxe L and Skip
IX100111000Y11 BR\2 (V mode form)
DISPLACEMENTS

Calculates an effective address, EA. For 32-bit two's complement
signed values only, compaxes the contents of L to the contents of the
32-bit location specified by EA and skips as follows.

C o n d i t i o n S k i p

Contents of L > contents of EA. No skip.

Contents of L = contents of EA. Skip 16 bits (one halfword).

Contents of L < contents of EA. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

^ CMA
Complement A
1100000100000001 (S , R , V mode fo rm)

Forms the one's complement of the contents of A by inverting the value
of each bit, and stores the result in A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2 - 2 7 S e c o n d B d i t i o n

INSTRUCTION SETS GUIDE

^ CRA
Clear A to 0
llOOOOOOOOlOOOOO (S, R, V mode form)

Clears the contents of A to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CRB
Cleax B to 0
1100000000001101 (S, R, V mode form)
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Clears the contents of B to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

Opcode '140014 executes both a CRB and a FDBL. This is a
conversion aid for P300 programs. This opcode should not be
used; it is implemented for compatibility's sake only.

^ CRE
Cleax E to 0
11 0 0 0 0 11 0 0 0 0 0 1 0 0 (V m o d e f o r m)

Clears the contents of E to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CRL
Cleax L to 0
1100000000001000 (S, R, V mode form)

Clears the contents of L to 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ CRI_E
Clear L and E to 0
1100001100001000 (V mode form)

Clears the contents of E and L to 0. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

" >

S e c o n d E d i t i o n 2 - 2 8

S, R, AND V MODE

^ CSA
Copy Sign of A
1100000011010000 (S, R, V mode form)

Sets CBIT equal to the value of bit 1 of A and clears bit 1 of A to 0.
The value of LINK is ijxieteiminate. Leaves the values of the condition
codes unchanged.

2 - 2 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ DAD address
Double Add
IXOl lOl lOOOOOO CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 1 0 DISPLACEMENTS (S, R mode form)

Calculates an effective address, EA. Fetches the 31-bit contents of
the location specified by EA and adds them to the 31-bit contents of A
and B. Stores the result in A and B.

If the result is greater than or equal to 2**30, an integer exception
occurs and the instruction loads bit 1 of A with a 1, and bits 2 to 16
of A and. bits 2 to 16 of B with (result - (2**30)). Bit 1 of B
contains 0.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a 0 and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
contains 0.

If no integer exception occurs, CBIT is reset to 0. At the end of the
instruction, LINK contains the carry-out bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be 0. If nonzero,
unpredictable results will occur.
2. This instruction executes in double precision mode only.

▶ DBL
Enter Double Precision Mode
0 0 0 0 0 0 0 0 0 0 0 0 0 111 (S , R m o d e f o r m)

Enters double precision mode by setting bit 2 of the keys to 1.
Subsequent LDA, STA, ADD, and SUB instructions manipulate 31-bd.t
integers and axe interpreted as DID, DST, DAD, and DSB, respectively.
Leaves the values of CBIT, LINK, and the condition codes un<_a_anged. In
V or I mode, bit 2 of the keys has no effect.

S e c o n d E d i t i o n 2 - 3 0

S, R, AND V MODE

^ DFAD address
Double Precision Floating Add
I X O l l O l l O O O Y l O B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X011011000010 CB \2 (R mode l ong)
[DISPLACEMENTS]

Calculates an effective address, EA. Adds the double precision number
in the location specified by EA to the 64-bit contents of the DAC.
(See Chapter 6 of the System Architecture Reference Guide for more
information.) Normalizes the result and loads it into the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes axe ijadeterminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.
If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ DFCM
Double Precision Floating Complement
11 0 0 0 0 0 1 0 11111 0 0 (R , V m o d e f o r m)

Forms the two's complement of the double precision number in the DAC
and normalizes it if necessary. (See Chapter 6 of the System
Architecture Reference Guide.) Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2 - 3 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ DPCS address
Double Precision Floating Point Compaxe and Skip
IX100111000Y10 BR\2 (V mode long)
DISPLACEMENT\16

1 X 1 0 0 1 1 1 0 0 0 0 1
[DISPLACEMENT\16]

0 CB\2 (R mode long)

Calculates an effective address, EA. Compares the DAC contents (see
Chapter 6 of the System Architecture Reference Guide) to the contents
of the 64-bit location specified by EA and skips as follows.

Condit ion

DAC contents > EA contents.

DAC contents = EA contents.

DAC contents < EA contents.

Skip

No skip.

Skip 16 bits (one halfword).

Skip 32 bits (two halfwords)

The values of CBIT, LINK, and the condition codes are iJid^terminate.
Qn some processors, DFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers axe compaxed for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other prooessors actually perform a subtract
operation, resulting in a proper comparison.

▶ DFDV address
Double Precision Floating Point Divide
I X 1 1 1 1 1 1 0 0 0 Y 1 0 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1 X 1 1 1 1 1 1 0 0 0 0
[DISPLACEMENTS]

1 0 CB\2 (R mode long)

Calculates an effective address, EA. Divides the contents of the E&C
by the contents of the location specified by EA. (See Chapter 6 of the
Sjystem Architecture Reference Guide.) Normalizes the result and stores
the whole quotient in the DAC. An overflow or a divide by 0 causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and. the condition codes axe
ij ideterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-32

S, R, AND V MODE

^ DFTD address
Double Precision Floating Point Load
IXOOIOIIOOOYIO BR\2 (V mode long form)
DISPLACEMENTS

1X001011000010 CB\2 (R mode long form)
[DISPLACEMENTS]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the DAC. (See Chapter 6 of the System
Architecture Reference Guide.) Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the DAC.

^ DFLX address
Double Precision Floating Point Load Index
I 0 11 0 111 0 0 0 Y 1 0 B R \ 2 (V m o d e l o n g)
DISPLACEMENT\16

10110111000010 CB\2 (R mode l ong)
[DISPLACEMENTS]

Calculates an effective address, EA. Loads the index register, X, with
four times the 16-bit contents of the location specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

DFLX cannot do indexing. See Appendix B for more information.

^ DFMP address
Double Precision Floating Point Multiply
I X 111 0 11 0 0 0 Y 1 0 B R \ 2 (V m o d e l o n g)
DISPLACEM__NT\16

1X111011000010 CB\2 (R mode l ong)
[DISPLACEMENTS]

Calculates an effective address, EA. Multiplies the contents of the
DAC Ijy the 64-bit contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result, if necessary, and stores it in the DAC. An overflow causes a
floating-point exception; if none occurs, CBIT is reset to 0. The
values of LINK and the condition codes axe ijideterminate.

2 - 3 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the DFMP instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ DFSB address
Double Precision Floating Point Subtract
IX011111000Y10 BR \2 (V mode l ong)
DISPLACEMENTS

1X011111000010 CB\2 (R mode long)
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the locations specified by EA from the contents of the E_\C. (See
Chapter 6 of the System Architecture Reference Guide.) Loads the
result in the DAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes axe indeteiminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.
If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

▶ DFST address
Double Precision Floating Point Store
IX010011000Y10 BR\2 (V mode l ong)
DISP_̂ CEMENT\16

1X010011000010 CB\2 (R mode long)
[DISPLACEMENTS 1

Calculates an effective address, EA. Stores the contents of the DAC
into the location specified by EA. (See Chapter 6 of the System
Architecture Reference Guide.) Leaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

S e c o n d E d i t i o n 2 - 3 4

S, R, AND V MODE

^ DIV address
Divide
I X l l l l l l O O O O O O C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

I X 1 1 1 1 DISPLACEMENTS (S mode; R mode short)

CeLlculates an effective address, EA. Divides the 31-bit contents of A
and B by the 16-bit contents of the location specified by EA. Stores
the 16-bit quotient in A and the 16-bit remainder in B. The sign of
the remainder equals the sign of the dividend.

Overflow occurs when the quotient is less than -(2**15) or greater than
(2**15)-1. An overflow or a divide by 0 causes an integer exception.
If no integer exception occurs, CBIT is reset to 0. This instruction
leaves the values of LINK and the condition codes ij_determinate.

If an integer exception occurs when bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

^ DIV address
Divide
I X 111111 0 0 0 Y 0 0 B R \ 2 (V m o d e l o n g)
DISFI_ACEMENTS

I X 1 1 1 1 DISPLACEMENTS (V mode short)

Calculates an effective address, EA. Divides the contents of L by the
16-bit contents of the location specified by EA. Stores the 16-bit
quotient in A and the 16-bit remainder in B. The sign of the remainder
equals the sign of the dividend.

When the quotient is less than -(2**15) or greater than (2**15)-1, an
overflow occurs, causing an integer exception. A divide by 0 also
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. This instruction leaves the values of LINK and the
condition codes indeterminate.

If the integer exception occurs when bit 8 of the keys is 0, the
instruction sets CBIT to 1. If bit 8 is 1, the instruction sets CBIT
to 1 and causes an integer exception fault. See Chapter 10 of the
Sjystem Architecture Reference Guide for more information.

2 - 3 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ DLD address
Double Load
1X001011000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 0 1 0 DISPLACEMENTS (S mode; R mode short)

Calculates an effective address, EA. Loads the 16-bit contents of the
location specified by EA into A, and the 16-bit contents of the
location specified by EA+1 into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This instruction executes only in double precision mode.

▶ DRN
Double Round From Quad
0 1 0 0 0 0 0 0 11 0 0 0 0 0 0 (V m o d e f o r m)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 50 to 96 of QAC axe
not 0, or bit 48 of QAC contains 1, the instruction adds the value of
bit 49 to that of bit 48 (unbiased round) and clears bits 49 to 96 of
QAC to 0. If any other condition exists, no unbiased rounding occurs
but bits 49 to 96 of QAC are still cleared to 0. After any rounding
and clearing occurs, the instruction normalizes the result and loads it
into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If ERN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

S e c o n d E d i t i o n 2 - 3 6

S, R, AND V MODE

^ ERNM
Double Round From Quad Towards Negative Infinity
11 0 0 0 0 0 1 0 1111 0 0 1 (V m o d e f o r m)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the iiistruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction ends. In any other case, the
instruction clears bits 49 to 96 to 0, normalizes the result, and
places it in bits 1 to 64 of QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes axe indeterminate.

Note

If ERNM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ ERNP
Double Round From Quad Towards Positive Infinity
0 1 0 0 0 0 0 0 11 0 0 0 0 0 1 (V m o d e f o r m)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 48 of QAC, clears bits
49 to 96 to 0, the instruction normalizes the result and places it in
bits 1 to 64 of QAC.

If no floati_ng-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are ijsdeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If ERNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2 - 3 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ DRNZ
Double Round From Quad Towards Zero
0 1 0 0 0 0 0 0 11 0 0 0 0 1 0 (V m o d e f o r m)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 49 to 96 of QAC
contain zeros and bit 1 contains 1, the instruction adds 1 to the value
contained in bit 48 of QAC, clears bits 49 to 96 to 0, normalizes the
result and places it in bits 1 to 64 of QAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes axe indetermijiate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRNZ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ ERX
Decrement and Replace X
1100000010001000 (S, R, V mode form)

Decrements the contents of X by 1 and stores the result in X. Skips
the next memory location if the decremented value is 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ DSB address
Double Subtract
1X011111000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 1 1 1 DISPLACEMENTS (S mode; R mode short)

Calculates an effective address, EA. Fetches the 31-bit integer
contained in the locations specified by EA and EA+1 and subtracts it
from the 31-bit integer contained in A and B. Stores the result in A
and B.

S e c o n d E d i t i o n 2 - 3 8

S, R, AND V MODE

If the result is greater than or equal to 2**30, an integer exception
occurs and the DSB instruction loads bit 1 of A with 1, and bits 2 to
16 of A and 2 to 16 of B with the absolute value of (result - (2**30)).
Bit 1 of B must be 0.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with a 0, and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
must be 0.

If no integer exception occurs, CBIT is reset to 0. At the end of the
instruction, LINK contains the borrow bit. The coi_dition codes reflect
the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be 0 or indetermi nate
results occur.

2. This instruction executes in double precision mode only.

3. To negate a 31-bit integer, subtract it from 0.

▶ DST address
Double Store
1X010011000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 1 0 0 DISPLACEMENTS (S mode; R mode short)

Calculates an effective address, EA. Stores the contents of A at the
location specified by EA, and the contents of B at the location
specified by EA+1. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This instruction executes only in double precision mode.

2 - 3 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ DVL address
Divide Long
I X l l l l l l O O O Y l l B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

Calculates an effective address, EA. Divides the 64-bit contents of L
and E by the 32-bit contents of the location specified by EA. Stores
the quotient in L and the remainder in E. An overflow or divide by 0
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. The values of LINK and the condition codes are
indetermi nate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This note applies only to the 150/250, 450/550/250-11, 1450-11,
and 2250 prooessors. When the value '040000 '000000 '000000
'000000 is divided by '100000 '000000, the quotient overflows
the hardware (and sets the CBIT to 1) in the early stage of the
algorithm even though the final result is not in overflow
('100000 '000000).

S e c o n d E d i t i o n 2 - ^ 4 0

S, R, AND V MODE

▶ E16S
Enter 16S Mode
OOOOOOOOOOOOlOOl (S, R, V mode form)

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E32I
Enter 321 Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 (S , R , V m o d e f o r m)

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 321 address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E32R
Enter 32R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 11 (S , R , V m o d e f o r m)

Sets bits 4 to 6 of the keys to Oil. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E32S
Enter 32S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 (S , R , V m o d e f o r m)

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions
may now be interpreted, and 32S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E64R
Enter 64R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 (S , R , V m o d e f o r m)

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

2 ^ i l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ E64VEnter 64V Mode
OOOOOOOOOOOOIOOO (S, R, V mode form)

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used toform effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ EAA addressEffective Address to A
1X000111000001 CB\2 (R mode form)
DISPLACEMENTS

Calculates an effective address, EA, and loads it into A. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ EAFA fax,addressEffective Address to FAR
000000101100 FAR 000 (V mode form)
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR for direct access;indirection uses the bit field in the indirect pointer (if any).
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Figure 2-3 shows the format of the EA loaded into the specified FAR.

1 16 17 32 33 36
I RING, SEG I WORD # I BIT # I

EA Format for EAFA
Figure 2-3

EAL address
Effective Address to L
1X00011 1000Y01 BR\2 (V mode form)
DISPT-ACEMENTS

Calculates an effective address, EA, and loads it into L. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n 2 - ^ 2

S, R, AND V MODE

^ EALB address
Effective Address to LB
I X l O l l l l O O O Y l O B R \ 2 (V m o d e f o r m)
DISPLACEMENTS

Calculates an effective address, EA, and loads it into LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ EAXB address
Effective Address to XB
IX101011000Y10 BR\2 (V mode form)
DISPLACEMENTS

Calculates an effective address, EA, and loads it into XB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ EIO address
Execute I/O
I0110011000Y01 BR\2 (V mode fo rm)
DISPLACEMENTS

Calculates an effective address, EA. Executes bits 17 to 32 of EA as
if the bits were an extended PIO instruction. If execution is
successful, the instruction sets the condition codes as follows:

O C M e a n i n g

EQ Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, or SKS; all OCP

Leaves the values of LINK and CBIT unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

^ ENB
Enable Interrupts
0000000100000001 (S, R, V mode form)

Enables interrupts by setting bit 1 of the modals to 1. Interrupts
remain inhibited for the next instruction. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2 ^ 4 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

ENB is a restricted instruction.

^ ENBL
Enable Interrupts (Local)
0000000100000001 (S, R, V mode form)

This 850 instruction performs the same actions as ENB except that it is
performed specifically for the local prooessor. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

ENBL is a restricted instruction.

^ ENEM
Enable Interrupts (Mutual)
0000000100000000 (S, R, V mode form)

For the 850, a prooessor checks the availability of the mutual
exclusion lock. If available, the prooessor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

▶ ENBP
Enable Interrupts (Prooess)
0000000100000010 (S, R, V mode form)

For the 850, a processor checks the availability of the prooess
exchange lock. If available, the prooessor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 2 - 4 4

S, R, AND V MODE

^ ERA address
Exclusive CR to A
IX010111000Y00 BR\2 (V mode l ong)
DISPLACEMENTS

1X010111000000 CB\2 (R mode long)
[DISPLACEMENT\16]

I X 0 1 0 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Exclusively CRs the contents of
the location specified by EA and the contents of A. Stores the results
in A. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^> ERL address
Exclusive Or to L
I X 0 1 0 111 0 0 0 Y 11 B R \ 2 (V m o d e l o n g)
DISPLACEMENT16

Calculates an effective address, EA. Exclusively ORs the contents of L
with the contents of the 32-bit location specified by EA. Stores the
results in L. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

2 ^ 1 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ FAD address
Floating Point Add
IXO l lO l lOOOYOl BR\2 (V mode l ong)
DISPLACEMENTS

1X011011000001 CB\2 (R mode long)
[DISPLACEMENTS]

Calculates an effective address, EA. Adds the contents of the location
specified by EA to the contents of the FAC. (See Chapter 6 of the
System Architecture Reference Guide.) Stores the result in the FAC and
normalizes it if necessary. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes axe incleterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ FCDQ
Floating Point Convert Double to Quad
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 (V m o d e f o r m)

Clears FAC1 to 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

If FCDQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ PCM
Floating Point Complement
11 0 0 0 0 0 1 0 1 0 11 0 0 0 (R , V m o d e f o r m)

Forms the two's complement of the FAC mantissa and normalizes the
result if necessary. (See Chapter 6 of the System Architecture
Reference Guide.) Stores the result in the FAC. Ah overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes axe
__ndeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

S e c o n d E d i t i o n 2 ^ 3 6

S, R, AND V MCX3E

▶ PCS address
Floating Point Compaxe and Skip
I X 1 0 0 1 1 1 0 0 0 Y 0 1 B R \ 2
DISPLACEMENTS

1 X 1 0 0 1 1 1 0 0 0 0 0 1 C B \ 2
[DISPLACEMENTS]

(V mode long)

(R mode long)

Calculates an effective address, EA. In rounding mode, the instruction
rounds the contents of DAC, then compares the rounded value to the
contents of the memory location specified by EA. In normal mode, no
rounding occurs before the compare. (See Chapter 6 of the System
Architecture Reference Guide for more information.) The compaxe
results in a skip as follows:

Condition

FAC contents > EA contents.

FAC contents = EA contents.

FAC contents < EA contents.

Skip

No skip.

Skip 16 bits (one halfword).

Skip 32 bits (two halfwords)

The values of CBIT, LINK, and the condition codes axe indeterminate.

Qn some processors, FCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results axe returned and
the instruction ends. Unnormalized numbers axe unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

^ FDBL
Floating Point Convert Single to Double
11 0 0 0 0 0 0 0 0 0 0 111 0 (V m o d e f o r m)

Converts the single precision floating-point number in the floating
accumulator to a double precision floating-point number by loading
zeros into bits 33 to 48 of the floating accumulator. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

2^47 Second Edition

INSTRUCTION SETS GUIDE

▶ FDV address
Floating Point Divide
IX111111000Y01 BR\2 (V mode long)
DISPLA(_EMENTS

I X l l l l l l O O O O O l C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

Calculates an effective address, EA. Divides the contents of the FAC
by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. A divide by 0 or an overflow
causes a floating-point exception. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

The location specified by EA must contain a normalized
floating-point number. An unnormalized divisor can cause an
error.

^ FLD address
Floating Point Load
IX001011000Y01 BR\2 (V mode long)
DISPLACEMENTS

1X001011000001 CB\2 (R mode long)
C DISPLACEMENT\16]

Calculates a 32-bit effective address, EA. Loads the 32-bit contents
in the location specified by EA into the FAC without normalizing. (See
Chapter 6 of the System Architecture Reference Guide.) Leaves the
values of LINK, CBIT, and the condition codes unchanged.

▶ PLOT
Convert Integer to Floating Point
11 0 0 0 0 0 1 0 11 0 1 0 0 0 (R m o d e f o r m)

Converts the 31-bit integer contained in A and B to a normalized
floating-point number and stores the result in the floating
accumulator. The values of CBIT, LINK, and the condition codes axe
indeterminate.

S e c o n d E d i t i o n 2 ^ 4 8

S, R, AND V MODE

^ FLTA
Convert Integer to Floating Point
11 0 0 0 0 0 1 0 1 0 11 0 1 0 (V m o d e f o r m)

Converts the 16-bit integer in A to a floating-point number and stores
the result in the floating accumulator. The values of CBIT, LINK, and
the condition codes axe indeterminate.

^ FLTL
Convert Long Integer to Floating Point
11 0 0 0 0 0 1 0 1 0 111 0 1 (V m o d e f o r m)

Converts the 32-bit integer in L to a floating-point number and stores
the result in the floating accumulator. The values of CBIT, KENK, and
the condition codes axe ij^determinate.

^ FLX address
Floating Load Index
I 0 11 0 111 0 0 0 Y 0 1 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

10110111000001 CB \2 (R mode l ong)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the index register, X, with
two times the 16-bit contents of the location specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

FLX cannot do indexing. See Appendix B for more information.

▶ FMP address
Floating Point Multiply
I X 111 0 11 0 0 0 Y 0 1 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X111011000001 CB\2 (R mode l ong)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
FAC by the contents of the location specified by EA. (See Chapter 6 of
the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

2 ^ 4 9 S e c o n d E d i t i o n

INSOKUCnQN SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, the JMP instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ FRN
Floating Point Round
1100000101011100 (R, V mode form)

This instruction operates on and stores all results in the floating
accumulator.

For the 2350 to the 9955 II, the following actions occur. If bits 1 to
48 contain 0, then bits 49 to 64 axe cleaxed to 0. If bits 24 and 25
both contain 1, then 1 is added to bit 24, bits 25 to 48 axe cleaxed to
0, and the result is normalized. If bit 25 contains 1 and bits 26 to
48 axe not equal to 0, then 1 is added to bit 24, bits 25 to 48 axe
cleaxed, and the result is normalized.

For the earlier systems listed in "About This Book", the following
actions occur. If bits 1 to 48 contain 0, then bits 49 to 64 are
cleaxed to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are
cleaxed to 0, and the result is normalized.

For all systems, if no floating point exception occurs, sets CBIT to 0.
The values of LINK and the condition codes axe indeterminate.

If a floating point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating point exception fault.
See Chapter 10 of the Sjystem Architecture Reference Guide for more
information.

!▶ FRNM
FLoating Point Round Towards Negative Infinity
0 1 0 0 0 0 0 0 11 0 1 0 0 0 0 (V m o d e f o r m)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction clears bits 25 to 48 to 0, normalizes the result, and
places it in DAC. If no floating-point exception occurs, the
instruction resets CBIT to 0. The values of LINK and the condition
codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
(See Chapter 10 of the System Architecture Reference Guide.)

S e c o n d E d i t i o n 2 - 5 0

S, R, AND V MODE

▶ FRNP
Floating Point Round Towards Positive Infinity
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 (V m o d e f o r m)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 24 of DAC, clears bits
25 to 48 to 0, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes axe indetermi___ate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
in format ion.

^ FRNZ
Floating Point Round Towards Zero
0100000011010001 (V mode fo rm)

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to zero,
normalizes the result, and places it in DAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
in format ion.

2 - 5 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ FSB address
Floating Point Subtract
IX011111000Y01 BR\2 (V mode l ong)
DISPLACEMENTS

I X O l l l l l O O O O O l C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 32-bit contents of
the locations specified by EA from the contents of the FAC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the FSB instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ FSGT
Floating Point Skip on F Greater Than 0
11 0 0 0 0 0 1 0 1 0 0 11 0 1 (R , V m o d e f o r m)

Skips the next 16-bit halfword if the contents of the floating
accumulator axe greater than 0. Leaves the value of LINK and CBIT
unchanged. The values of the condition codes are i-ndeterminate. FSGT
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ FSLE
Floating Point Skip on F Less Than or Equal to 0
11 0 0 0 0 0 1 0 1 0 0 11 0 0 (R , V m o d e f o r m)

Skips the next 16-bit halfword if the contents of the floating
accumulator axe less than or equal to 0. Leaves the values of LINK and
CBIT unchanged. The values of the condition codes axe indeterminate.
FSLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

S e c o n d E d i t i o n 2 - 5 2

S, R, AND V MCEfE

^ FSMI
Floating Point Skip on F Minus
11 0 0 0 0 0 1 0 1 0 0 1 0 1 0 (R , V m o d e f o r m)

Skips the next 16-bit halfword if the contents of the floating
accumulator axe less than 0. Leaves the values of KENK and CBIT
unchanged. The values of the condition codes are indeterminate. FSMI
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ FSNZ
Floating Point Skip on F Not 0
11 0 0 0 0 0 1 0 1 0 0 1 0 0 1 (R , V m o d e f o r m)

Skips the next 16-bit halfword if the contents of the floating
accumulator axe less than or equal to 0. Leaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSNZ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ FSPL
Floating Point Skip on FAC Plus
11 0 0 0 0 0 1 0 1 0 0 1 0 11 (R , V m o d e f o r m)

Skips the next 16-bit halfword if the contents of the floating
accumulator axe greater than or equal to 0. Leaves the values of LINK
and CBIT unchanged. The values of the condition codes are
indeterminate. FSPL works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

▶ FST address
Floating Point Store
I X 0 1 0 0 11 0 0 0 Y 0 1 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1 X 0 1 0 0 11 0 0 0 0 0 1 C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

Calculates an effective address, EA. Stores the contents of the FAC
into the 32-bit location specified by EA. (See Chapter 6 of the System
Architecture Reference Guide.) If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store

2 - 5 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

exception) occurs. If no floating-point exception occurs, the
instruction resets CBIT to 0. At the end of the instruction, the
values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

This instruction does not normalize the result before loading it into
the specified memory location unless rounding is enabled.

^ FSZE
Floating Point Skip on F Equal to 01100000101001000 (R, V mode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator equal 0. Leaves the values of KENK and CBIT unchanged.
The values of the condition codes are i_r_determinate. FSZE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to zero and less than
zero. (See Chapter 6 in the System Architecture Reference Guide.)

S e c o n d E d i t i o n 2 - 5 4

S, R, AND V MODE

HLT
H a l t
O O O O O O O O O O O O O O O O (S, R, V mode form)

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPTR. The contents of RSAVPTR can be accessed by
an LDLR/STLR instruction with address '40037. The registers axe saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 2-3.

Table 2-3
Order of Saved Registers after HLT

6350, 2350 to 2755,
9750 to 9955 II 9650 and 9655 Earlier Systems* 1

User Reg Set 3 User Reg Set 1 User Reg Set 2 1
User Reg Set 4 User Reg Set 2 User Reg Set 1 i
User Reg Set 1 User Reg Set 3 EMx Reg F i le I
User Reg Set 2 User Reg Set 4 Microcode Reg File i
Microcode Reg File, User Reg Set 5

Set 2 User Reg Set 6
Indirect Reg Set User Reg Set 7
Microcode Reg File, User Reg Set 8

Set 1 EMx Reg File
EMx Reg File Microcode Reg File,

Set 1
Microcode Reg File,

Set 2

* The earlier systems axe listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

2-55 Second Edition

INSTRUCTION SETS GUIDE

^ IAB
Interchange A and B
OOOOOOOOlOOOOOOl (S, R, V mode form)

Interchanges the contents of A and B. Leaves the values of LINK, CBIT,
and the condition codes unchanged.

^ ICA
Interchange Bytes of A Register
1100001011100000 (S, R, V mode form)

Interchanges the bytes of A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

▶ IGL
Interchange Bytes and Clear Left
1100001001100000 (S, R, V mode form)

Interchanges the bytes of A, then clears the left byte to 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ ICR
Interchange Bytes and Clear Right
1100001010100000 (S, R, V mode form)

Interchanges the bytes of A, then clears the right byte to 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

▶ ILE
Interchange L and E
1100001100001100 (S, R, V mode form)

Interchanges the values of E and L. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

S e c o n d E d i t i o n 2 - 5 6

S, R, AND V MODE

▶ IMA address
Interchange Memory and A
I X l O l l l l O O O Y O O B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X101111000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 1 0 1 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Interchanges the contents of A
and the contents of the location specified by EA. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

Note

The IMA instruct ion is nonatomic, and, especial ly for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STAC instruction instead.

▶ INA function,device
Input to A
10 110 0 FUNCTI0N\4 DEVTCE\6
Valid for modes S, R

Loads data from the specified device into A. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

^ INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 (V m o d e f o r m)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
interrupts. The values of CBIT, KENK, and the condition codes are
indeterminate. A process exchange will occur if the notified prooess
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

2 - 5 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

INBC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
Sjystem Architecture Reference Guide for more information.

^ INBN address
Interrupt Notify Beginning
0000001010001101 (V mode fo rm)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by leading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to cleax the currently
active interrupt. The values of CBIT, KENK, and the condition codes
axe indeteiminate. A prooess exchange will occur if the notified
process is of a higher priority than the interrupted prooess. See
Chapter 9 of the System Architecture Reference Guide for more
information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
System Architecture Reference Guide for more information.

^ INEC address
Interrupt Notify End, Cleax Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 111 0 (V m o d e f o r m)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue. Issues a
CAI pulse to cleax the currently active interrupt, and enables
interrupts. The values of CBIT, LINK, and the condition codes axe
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted prooess. See Chapter 9 of
the System Architecture Reference Guide for more information.

S e c o n d E d i t i o n 2 - 5 8

S, R, AND V MODE

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
System Architecture Reference Guide for more information.

▶ INEN address
Interrupt Notify End
0 0 0 0 0 0 1 0 1 0 0 0 11 0 0 (V m o d e f o r m)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted prooess by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
prooess at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to clear the currently active
interrupt. The values of CBIT, KENK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

This instruction is normal ly used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

^ INH
Inhibit Interrupts
0000001000000001 (S , R, V mode fo rm)

Inhibits interrupts by setting bit 1 of the modals to 0. Inliibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that axe made over the I/O
bus. This instruction takes effect immediately. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

Note

This is a restricted instruction.

2 - 5 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ INHL
Inhibit Interrupts (Local)
OOOOOOlOOOOOOOOl (S, R, V mode form)

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, KENK,and the condition codes unchanged.

Note

This is a restricted instruction.

▶ INHM
Inhibit Interrupts (Mutual)
0000001000000000 (S, R, V mode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ INHPInhibit Interrupts (Prooess)
0000001000000010 (S, R, V mode form)

For the 850, a prooessor checks the availability of the process
exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other prooessor and then sets the lock and inhibits interrupts. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 2 - 6 0

S, R, AND V MODE

^ INK
Input Keys
O O O O O O O O O O l O O O l l (S , R m o d e f o r m)

Loads the contents of the S and R mode keys into A. Reads the
low-order 8 bits of the floating exponent (address trap location 6)
register along with the high-order 8 bits of the keys register. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ I N T
Convert Floating Point to Integer
1100000101101100 (S, R mode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 31-bit integer and stores the result in A and
bits 2 to 16 of B. Bit 1 of B (bit 17 of the result) is forced to 0.
Ignores the fractional portion of the floating-point number. Overflow
occurs if the value in the floating accumulator is less than -2**30 or
greater than (2**30)-l. If overflow occurs, a floating-point exception
occurs. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
informat ion.

^ INTAConvert Floating Point to Integer
1100000101011001 (V mode fo rm)

Converts the double precision number contained in the floating
accumulator to a 16-bit integer and stores the result in A. Ignores
the fractional portion of the floating-point number. For example, -4.5
is converted to -A. and +4.5 is converted to +4. Overflow occurs if the
value in the floating accumulator is less than -2**15 or greater than
(2**15)-1. If overflow occurs, a floating-point exception occurs. If
no floating-point exception occurs, CBIT is reset to 0.

At the end of this instruction, the B register contents axe
__i_determinate. The values of KENK and the condition codes axe
ioxieterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
informat ion.

2 - 6 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ INTL
Convert Floating Point to Long Integer
11 0 0 0 0 0 1 0 1 0 11 0 11 (V m o d e f o r m)

Converts the double precision floating-point number contained in the
floating accumulator to a 32-bit integer and stores the result in L.
Ignores the fractional portion of the floating-point number contained
in the floating accumulator. For example, -4.5 is converted to -4 and
+4.5 is converted to +4. Overflow occurs if the floating-point number
is less than -2**31 or greater than (2**31)-1. If overflow occurs, a
floating-point exception occurs. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
axe indete_?minate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

▶ IRS address
Increment and Replace Memory
IX101011000Y00 BR\2 (V mode long)
DISPLACEMENTS

1X101011000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 1 0 1 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the contents of the
location specified by EA, adds 1 (a 16-bit inclement), and stores the
result back in the location specified by EA. Skips the next location
if the incremented value is 0. Leaves the values of CBIT, KENK, and
the condition codes unchanged.

▶ IRTC
Interrupt Return, Cleax Active Interrupt
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 (V m o d e f o r m)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS. Issues a CAI pulse to clear the currently
active interrupt, and enables interrupts.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 2 - 6 2

S, R, AND V MODE

^ IRTN
Interrupt Return
O O O O O O O l l O O O O O O l (V m o d e f o r m)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAI pulse to cleax the currently active interrupt.

Note

This is a restricted instruction.

▶ IRX
Increment and Replace X
1100000001001100 (S, R, V mode form)

Increments the contents of X by 1 and stores the result in X. Skips
the next 16-bit halfword if the incremented value is 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

▶ ITLB
Invalidate STLB Entry
0 0 0 0 0 0 0 11 0 0 0 11 0 1 (V m o d e f o r m)

Invalidates the STLB entry that corresponds to the virtual address
contained in L. The values of CBIT, LINK, and the condition codes are
indeterminate. You must execute this instruction whenever you change
the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you usually have to invalidate the
entire STLB by issuing the instruction PT__B. A 0 in the segment number
portion of L invalidates the IOTLB entry corresponding to the address
specified by L.

Note

This is a restricted instruction.

2 - 6 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ JEK address
Jump and Decrement X
I O l l O l l l O O O O l O C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts 1 from the contents of
the index register, X. If the decremented value does not equal 0, the
instruction loads EA into the program counter. If the decremented
value is equal to 0, execution continues with the next sequential
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing. See Appendix B for more
information.

▶ JIX address
Increment X and Jump if Not Equal to 0
10110111000011 CB\2 (R mode fo rm)
[DISPLACEMENTS]

Calculates an effective address, EA. Adds 1 to the contents of the
index register, X. If the incremented value does not equal 0, the
instruction loads EA into the program counter. If the incremented
value is equal to 0, execution continues with the next sequential
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing.

▶ JMP address
Jump
IX000111000Y00 BR\2 (V mode long)
DISPLACEMENTS

1X000111000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 0 0 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Loads EA into the program
counter. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

S e c o n d E d i t i o n 2 - 6 4

S, R, AND V MODE

^ JST address
Jump and Store
IX100011000Y00 BR\2 (V mode l ong)
DISPLACEMENTS

IXIOOOIIOOOOOO CB\2 (R mode long)
[DISPLACEMENTS]

I X 1 0 0 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the
program counter in the location specified by EA. Execution continues
at the location EA+1.

The JST instruction truncates the return address according to the
addressing mode before storing it. The high-order bits of the memory
location are not affected by the store. This allows you to preset the
I or X bits in some modes as follows:

Mode Allowed Presets

16S I, x
32S, 32R

64R, 64V none

Note

JST cannot be used in shared code. In Ring 0, JST inhibits
interrupts during execution of the next instruction.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

▶ JSX address
Jump and Save in X
I 111 0 111 0 0 0 Y 11 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1111 0 111 0 0 0 0 11 C B \ 2 (R m o d e l o n g)
[DISPLACEMENT\16]

Calculates an effective address, EA. Increments the contents of the
program counter by 1 and loads the result into X. Loads EA into the
program counter. For the 750 and 850, if the value of CB is 2 or 3,
then the next 16 bits axe skipped. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

2 - 6 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

JSX cannot do indexing. See Appendix B for more information.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

^ JSXB address
Jump and Save in XB
IX110011000Y10 BR\2 (V mode long)
DISPLACEMENTS

1X110011000010 CB\2 (R mode long)
[DISPLACEMENTS]

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine calls outside the current
segment as well as within.

▶ JSY address
Jump and Save in Y
IX110011000Y00 BR\2 (V mode long)
DISPLACEMENTS

I X 1 1 0 0 DISPLACEMENTS (V mode short)

Calculates an effective address, EA. Loads Y with the location number
of the program counter. Loads EA into the program counter. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction may call only those subroutines residing in
the same prooedure segment as the instruction, because only the
offset number field of the program counter is saved.

S e c o n d E d i t i o n 2 - 6 6

S, R, AND V MODE

^ LCEQ
Load A on Condition Code EQ
11 0 0 0 0 11 0 1 0 0 0 0 11 (V m o d e f o r m)

If the condition codes reflect an equal to condition, the instruction
loads A with a 1. If the condition codes reflect a not equal
condition, the instruction loads A with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ LOGE
Load A on Condition Code GE
11 0 0 0 0 11 0 1 0 0 0 1 0 0 (V m o d e f o r m)

If the condition codes reflect a greater than or equal to condition,
the instruction loads A with a 1. If the condition codes reflect a
less than condition, the instruction loads A with a 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

^ LOGT
Load A on Condition Code GT
11 0 0 0 0 11 0 1 0 0 0 1 0 1 (V m o d e f o r m)

If the condition codes reflect a greater than condition, the
inst_7uction loads with a 1. If the condition codes reflect a less than
or equal to condition, the instruction loads A with a 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

^ LCLE
Load A on Condition Code LE
11 0 0 0 0 11 0 1 0 0 0 0 0 1 (V m o d e f o r m)

If the condition codes reflect a less than or equal to condition, the
instruction loads A with a 1. If the condition codes reflect a greater
than condition, the instruction loads A with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ LCLT
Load A on Condition Code LT
11 0 0 0 0 11 0 1 0 0 0 0 0 0 (V m o d e f o r m)

If the condition codes reflect a less than condition, the instruction
loads A with a 1. If the condition codes reflect a greater than or
equal to condition, the instruction loads A with a 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

2 - 6 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ LONE
Load A on Condition Code NE
11 0 0 0 0 11 0 1 0 0 0 0 1 0 (V m o d e f o r m)

If the condition codes reflect a not equal condition, the instruction
loads A with a 1. If the condition codes reflect an equal condition,
the instruction loads A with a 0. Leaves the values of CBIT, KENK, and
the condition codes unchanged.

^ LDA address
Load A
IX001011000Y00 BR\2 (V mode long)
DISP_-ACEMENT\16

1X001011000000 CB\2 (R mode long)
[DISPLACEMENTS]

I X 0 0 1 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Loads the contents of the
location specified by EA into A. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ LDC fir
Load Chaxacter
0 0 0 0 0 0 1 0 11 0 0 F L R 0 1 0 (V m o d e f o r m)

If the contents of the specified FLR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of A. When the FAR's bit field contains 0,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of A.
Updates the contents of the appropriate FAR by 8 so that they point to
the next character. Decrements the contents of the specified FLR by 1.
Sets the condition codes to NE.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to EQ.

The instruction leaves the values of CBIT and LINK unchanged.

Note

This instruction uses FARO when FI_RO is specified, and FAR1
when FLR1 is specified.

S e c o n d E d i t i o n 2 - 6 8

S, R, AND V MODE

▶ LDL address
Load Long
I X O O l O l l O O O Y l l B R \ 2 (V m o d e f o r m)
DISPLACEMENTS

Calculates a long (32-bit) effective address, EA. Loads the 32-bit
contents of the location specified by EA into L. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

▶ LDLR address
Load L From Addressed Register
IX010111000Y01 BR\2 (V mode fo rm)
DISPLACEMENTS

Calculates a 32-bit (1-word) effective address, EA. Loads L with the
contents of the register file location specified by the offset portion
of EA. Bit 2 and bit 12 of the offset portion of EA dete:nm__ne the
actions of this instruction:

B i t 2 B i t 1 2 A c t i o n

1* Ignore bit 1 and bits 3 to 9. The offset
portion of EA specifies an absolute register
number from 0 to '377.

0* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers '20 to '37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA
specify one of the registers 0 to '17 in the
current register set.

♦This is a restricted instruction.

Leaves the values of CBIT and KENK unchanged; the values of the
condition codes axe indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information on register sets.

2 - 6 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUILE

^ LEX address
Load X
I 1 1 1 0 1 1 1 0 0 0 Y 0 0 B R \ 2
DISPLACEMENTS

1 1 1 1 0 1 1 1 0 0 0 0 0 0 C B \ 2
[DISPLACEMENT\16]

(V mode long)

(R mode long)

I 1 1 1 0 1 DISPLACEMENT\10 (S, R, V mode short form)

Calculates an effective address,
the contents of the location
CBIT, KENK, and the condition

EA. Loads X, the index register, with
specified by EA. Leaves the values of
codes unchanged. For 750 and 850

processors in R mode only, if CB contains 2 or 3, the first 16 bits of
the next instruction will be skipped.

Note

LEK cannot specify indexing, though an address calculated in
the indirect <_xhain may do so in 16S mode. See Appendix B for
more information.

^ LDY address
Load Y
I 1 1 1 0 1 1 1 0 0 0 Y 0 1 B R \ 2
DISPALCEMENTS

(V mode form)

Calculates an effective address, EA. Loads Y with the contents of the
location specified by EA. Leaves the values of CBIT, KENK, and the
condition codes unchanged.

Note

LDY cannot do indexing. See Appendix B for more information.

LEQ
Load A on A Equal to 0
1 1 0 0 0 0 0 1 0 0 0 0 10 11 (S, R, V mode form)

If the contents of A axe equal to 0, the instruction loads A with a 1.
If the contents of A axe not equal to 0, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

Second Edition 2-70

S, R, AND V MODE

▶ LF
Load False
1100000100001110 (S , R , V mode fo rm)

Loads A with a 0. Leaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeteiminate.

|^ LFBQ
Load A on F Equal to 0
11 0 0 0 0 1 0 0 1 0 0 1 0 11 (V m o d e f o r m)

If the contents of the floating accumulator axe equal to 0, the
instruction loads A with a 1. If the F contents axe not equal to 0,
the instruction loads A with a 0. Leaves the values of KENK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFEQ works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

^ LFGE
Load A on Floating Accumulator Greater Than or Equal to 0
11 0 0 0 0 1 0 0 1 0 0 11 0 0 (V m o d e f o r m)

If the contents of the floating accumulator are greater than or equal
to 0, the instruction loads A with a 1. If the F contents axe less
than 0, the instruction loads A with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

▶ LFGT
Load A on Floating Accumulator Greater Than 0
11 0 0 0 0 1 0 0 1 0 0 11 0 1 (V m o d e f o r m)

If the contents of the floating accumulator axe greater than 0, the
instruction loads A with a 1. If the F contents axe less than or equal
to 0, the instruction loads A with a 0. Leaves the values of LINK and
CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

2 - 7 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ LFLE
Load A on Floating Accumulator Less Than or Equal to 0
11 0 0 0 0 1 0 0 1 0 0 1 0 0 1 (V m o d e f o r m)

If the contents of the floating accumulator axe less than or equal to
0, the instruction loads A with a 1. If the F contents axe greater
than 0, the instruction loads A with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFLE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

^ LFKE fir,data
Load FLR __mmediate
0 0 0 0 0 0 1 0 11 0 0 F I - R 0 11 (V m o d e f o r m)
INTEGER\16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FLR. Clears the
upper bits of the FLR. Leaves the values of CBIT, LINK, the condition
codes, and the associated FAR unchanged.

^ LFLT
Load A on Floating Accumulator Less Than 0
11 0 0 0 0 1 0 0 1 0 0 1 0 0 0 (V m o d e f o r m)

If the contents of the floating accumulator axe less than 0, the
instruction loads A with a 1. If the F contents axe greater than or
equal to 0, the instruction loads A with a 0. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) I_FLT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

^ LFNE
Load A on Floating Accumulator Not Equal to 0
11 0 0 0 0 1 0 0 1 0 0 1 0 1 0 (V m o d e f o r m)

If the contents of the floating accumulator are not equal to 0, the
instruction loads A with a 1. If the F contents are equal to 0, the
instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFNE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

S e c o n d E d i t i o n 2 - 7 2

S, R, AND V MODE

▶ LGE
Load A on Greater Than or Equal to 0
1100000100001100 (S, R, V mode form)

If the contents of A axe greater than or equal to 0, the instruction
loads A with a 1. If the contents of A axe less than 0, the
instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the compaxison.
(See Appendix A.) This instruction has the same opcode as LLGE.

^ LGT
Load A on Greater Than 0
1100000100001101 (S, R, V mode form)

If the A contents axe greater than 0, the instruction loads A with 1.
If the A contents are less than or equal to 0, the instruction loads A
with 0. Leaves the values of KENK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

▶ LIOT address
Load IOTLB
0000000000100100 (V mode fo rm)
AP\32

Loads a specified IOTLB entry. The following list shows the contents
of the KEOT entry and the origin of the information.

O r i g i n D e s c r i p t i o n

AP in KEOT Virtual address in I/O segment (calculated from EA).

Page table Physical address (translation of virtual address)
obtained from I/O segment. If the fault bit is set
to 1, a page fault occurs.

L register Target virtual address containing the segment number
and page number to be used by procedures accessing
this information. This is used to help invalidate
the proper locations in the cache. The segment
number and low-order 10 bits (offset number in the
page) are ignored.

The values of CBIT, LINK, and the condition codes are indeterminate.

Note

LIOT is a restricted instruction.

2 - 7 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ T.T.-R
Load on A Less Than or Equal to 0
1100000100001001 (S, R, V mode form)

If the contents of A axe less than or equal to 0, the instruction loads
A with 1. If the A contents axe greater than 0, the instruction loads
A with 0. Leaves the values of KENK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

▶ LLEQ
Load A on L Equal to 0
1100001101001011 (V mode fo rm)

If the contents of L axe equal to 0, the instruction loads A with a 1.
If the contents of L are not equal to 0, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

^ LLGELoad A on L Greater Than or Equal to 0
1100000100001100 (V mode form)

If the contents of L axe greater than or equal to 0, the instruction
loads A with a 1. If the contents of L are less than 0, the
instruction loads A with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes contain the result of the comparison.
(See Appendix A.) This instruction has the same op code as LGE.

^ LLGTLoad A on L Greater Than 0
1100001101001101 (V mode fo rm)

If the L contents axe greater than 0, the instruction loads A with 1.
If the L contents axe less than or equal to 0, the instruction loads A
with 0. Leaves the values of IINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

S e c o n d E d i t i o n 2 - 7 4

S, R, AND V MODE

^ LLL n
Long Left Logical
0 1 0 0 0 0 1 0 0 0 N\6 (S, R, V mode form)

Shifts the contents of A and B to the left, bringing zeros into bit 16
of B. Shifts bits out of bit 1 of B into bit 16 of A. CBIT and LINK
contain the value of last bit shifted out of A; the values of all
other bits shifted out of A axe lost. Leaves the values of the
condition codes uiichanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

^ T.T.T.T!
Load A on L Less Than or Equal to 0
1100001101001001 (V mode fo rm)

If the contents of L axe less than or equal to 0, the instruction loads
A with 1. If the L contents axe greater than 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

▶ LLLT
Load A on L Less Than 0
1100000100001000 (V mode fo rm)

If the contents of L are less than 0, the instruction loads A with 1.
If the L contents are greater than or equal to 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLT.

 ̂LE_NELoad A on L Not Equal to 0
1100001101001010 (V mode fo rm)

If the contents of L are not equal to 0, the instruction loads A with a
1. If the contents of L axe equal to 0, the instruction loads A with a
0. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

2 - 7 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ LE_R n
Long Left Rotate
0 1 0 0 0 0 1 0 1 0 N\6 (S, R, V mode form)

Shifts the contents of A and B left, rotating bit 1 of A into bit 16 of
B. Bit 1 of B shifts into bit 16 of A. CBIT and LINK contain a copy
of the last bit rotated into bit 16 of B. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

^ LLS n
Long Left Shift
0100001001 N\6 (V mode form)

Shifts the 32-bit integer in L left arithmetically, bringing zeros into
bit 32. Bits shifted out of bit 1 are lost. If bit 1 changes state,
it is interpreted as an overflow and causes an integer exception. If
no integer exception occurs, CBIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ LLS n
Long Left Shift
0 1 0 0 0 0 1 0 0 1 N\6 (S, R mode form)

Shifts the 31-bit integer contained in A and B left arithmetically,
bringing zeros into bit 16 of B. Bit 1 of B does not take paxt in the
shift; bit 2 of B is shifted into bit 16 of A. Bits shifted out of
bit 1 of A axe lost. If bit 1 of A changes state, it is interpreted as
an overflow and causes an integer exception. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Ref erence Guide for more information.

S e c o n d E d i t i o n 2 - 7 6

S, R, AND V MODE

^ LLT
Load on A Less Than 0
1100000100001000 (S, R, V mode form)

If the contents of A are less than 0, the instruction loads A with 1.
If the A contents are greater than or equal to 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LKLT.

^ LNE
Load on A Not Equal to 0
1100000100001010 (S, R, V mode form)

If the contents of A are not equal to 0, the instruction loads A with a
1. If the contents of A are equal to 0, the instruction loads A with a
0. Leaves the values of KENK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

▶ LPID
Load Prooess 3-D
0 0 0 0 0 0 0 11 0 0 0 1111 (V m o d e f o r m)

Loads the process ID from bits 1 to 10 of A into RPID (the process ID
register). This contains the 10 most significant bits of the user's
address space. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the prooess ID field of an STLB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STLB data is still valid (STLB hit) or not
(STLB miss). This register is for internal machine operation, and
should not normally be modified by the user.

Note

This is a restricted instruction.

^ LPSW address
Load PSW
0 0 0 0 0 0 0 111 0 0 1 0 0 1 (V m o d e f o r m)
AP\32

Changes the status of the prooessor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruct ion.

2 - 7 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Addresses a 64-hit (4-halfWord) block at the specified location. The
block has the following.

O f f s e t i n B l o c k C o n t e n t s

1 to 2 New program counter (ring, segment, offset
numbers)

3 N e w k e y s

4 N e w m o d a l s

LPSW loads the program counter and keys of the currently running
process with the contents of the first three offsets (bits 1 to 48),
then loads the processor modals with the contents of the fourth offset
(bits 49 to 64).

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current prooess. This bit is altered
by software only during a cold or warm start. If bit 15 is 0, the
currently executing prooess will continue to execute, but at a location
defined by the new value of the program counter. If bit 15 is 1, the
prooessor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the prooess that was
temporarily halted, note that execution resumes at the point defined by
the value of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals axe associated with the prooessor,
not the prooess.

This instruction loads the 64 bits (four halfwords) of the register set
that the STLR instruction cannot correctly load. STLR does not update
the separate hardware registers the prooessor uses to maintain
duplicate information for optimization.

Never use this instruction to change bits 9 to 11 of the modals. These
bits specify the current user register set. This means that if you do
not know the current value of these bits, you must do the following
each time you want to execute an LJPSW.

1. Inhibit interrupts.

2. Read the current values of modal bits 9 to 11 (use IDLR).

3. Mask the old values of the modal bits into the new information.

4. Load the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9 to 11 are predictable. When
you use LPSW after a Master Cleax to turn on processor exchange mode,

S e c o n d E d i t i o n 2 - 7 8

S, R, AND V MODE

bits 9 to 11 axe 010 because the prooessor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values axe still correct.

Also note that you should not use LPSW to set bits 16 (the save done
bit) or 15 (the in-dispatcher bit) of the keys, unless you are merely
loading status following a fault, check, or interrupt. When issuing
LPSW after a Master Cleax, make sure you load zeros into both of these
b i t s .

Note

LPSW is a restricted instruction. This instruction inhibits
interrupts during execution of the next instruction.

▶ IRL n
Long Right Logical
0 1 0 0 0 0 0 0 0 0 N\6 (S, R, V mode form)

Shifts the contents of A and B right, bringing zeros into bit 1 of A.
Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B axe lost. Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

▶]_RR n
Long Right Rotate
0 1 0 0 0 0 0 0 1 0 N\6 (S, R, V mode form)

Shifts the contents of A and B right, rotating bit 16 of B into bit 1
of A. Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain a
copy of the last bit rotated from B to A. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

▶ IRS n
Long Right Shift
0100000001 N\6 (V mode form)

Shifts the 32-bit integer contained in L right arithmetically. Shifts
copies of bit 1, the sign bit, into each of the vacated bits. CBIT and
LINK contain the value of the last bit shifted out of L; the values of

2 - 7 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

all other bits shifted out axe lost. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

▶ li^S n
Long Right Shift
0 1 0 0 0 0 0 0 0 1 N\6 (S, R mode form)

Shifts right arithmetically the 31-bit integer contained in A and B,
leaving bit 1 of A unaffected. Bit 1 of B does not take part in the
shift; bit 16 of A is shifted into bit 2 of B. Shifts copies of bit 1
of A into each of the vacated bits. CBIT and UNK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B axe lost. Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

^ LT
Load True
1100000100001111 (S, R, V mode form)

Loads A with a 1. Leaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeteiminate.

S e c o n d E d i t i o n 2 - 8 0

S, R, AND V MODE

^ MPL address
Multiply Long
I X l l l O l l O O O Y l l B R \ 2 (V m o d e f o r m)
DISPLACEMENTS

Calculates an effective address, EA. Multiplies the 32-bit integer in
L by the 32-bit integer in the location specified by EA. Stores the
64-bit result in L and E. The 150/250, 450/550/250-11, 1450-11, and
2250 processors leave the CBIT and KENK unchanged. The other 50 Series
processors reset the CBIT to 0 and leave the value of LINK
indeterminate. For all 50 Series processors, the condition codes are
unchanged. MPL cannot cause overflow or generate an integer exception.

^ MPY address
Mult iply
IX111011000YOO BR\2 (V mode long)
DISPLACEMENT\16

I X 1 1 1 0 DISPLACEMENTS (V mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Stores the
32-bit result in A and B. Resets the CBIT to 0. The value of LINK is
indeteiminate. Leaves the values of the condition codes unchanged.

Note

This instruction cannot cause overflow.

^ MPY address
Mult ip ly
1X111011000000 CB\2 (R mode l ong)
[DISPLACEMENTS]

I X 1 1 1 0 DISPLACEMENTS (S mode; R mode short)

Calculates an effective address, EA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location specified by EA. Loads the
31-bit result in A and B. If the multiplier and multiplicand axe both
-(2**15), an integer exception occurs. If no integer exception occurs,
CBIT is reset to 0. The value of LINK is indetermi.nate. For the 2350
to 9955 II, the condition codes axe unchanged. For the earlier
processors listed in "About This Book", the values of the condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2 - 8 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

ĵ > NFYB address
Notify to Beginning
0000001010001001 (V mode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses KEPO (last in, first out) queueing. Does not
cleax the currently active interrupt. The values of CBIT, LINK, and
the condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

S^ NFYE address
Notify to End
0000001010001000 (V mode form)
AP\32

Notifies the semaphore at the address specified by the address pointer
in the instruction. Uses FIFO (first in, first out) queueing. Does
not clear the currently active interrupt. The values of CBIT, KENK,
and the condition codes axe indeteiminate. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

▶ NOP
No Operation
0000000000000001 (S, R, V mode form)

Does nothing. leaves the values of CBIT, KENK, and the condition codes
unchanged.

S e c o n d E d i t i o n 2 - 8 2

S, R, AND V MODE

^ OCP function,device
Output Control Pulse
0 0 110 0 FUNCTIONS DEVTCE\6 (S, R mode form)

Sends a control pulse to perform the specified function to the
specified device. This instruction never skips. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

▶ CRA address
Inclusive CR
IX001111000Y10 BR\2 (V mode fo rm)
DISPLACEMENTS

Calculates an effective address, EA. Logically CRs the contents of the
location specified by EA and the contents of A and stores the result in
A. Leaves the values of CBIT, LINK, and the condition codes unchanged.

^ OTA function,device
Output From A
11110 0 FUNCTIONS EEVICE\6 (S, R mode form)

Transfers data from A to the specified device. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

^ OTK
Output Keys
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 (S , R m o d e f o r m)

Stores the contents of A in the keys. Loads CBIT, LINK, and the
condition codes as a result of the operation. Loads the low-order 8
bits of the floating exponent (address trap location 6) register with
the low-order 8 bits of A. If this instruction is executed in Ring 0,
it inhibits interrupt during execution of the next instruction.

2 - 8 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ PCL address
Prooedure Call
IXIOOOIIOOOYIO BR\2 (V mode form)
DISPI_ACEMENT\16

Sets CBIT, LINK, and the condtion codes to the values contained in the
ECB. See Chapter 8 of the System Architecture Reference Guide for a
complete description of this instruction.

Note

When arguments are to be transferred to the called procedure,
this instruction uses X and Y, destroying the previous contents
of these registers. XB is updated if an AP has the S bit = 0.
The contents of X, Y, and XB remain unchanged if no arguments
axe transferred. The contents of the condition codes, CBIT,
and KENK are not correctly saved in the ECB along with the rest
of the caller's keys.

▶ PID
Position for Integer Divide
0000000010001001 (S, R mode form)

Moves the contents of bits 2 to 16 of A into bits 2 to 16 of B. Clears
bit 1 of register B to 0 and extends the sign contained in bit 1 of A
into bits 2 to 16 of A. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ PLDAPosition for Integer Divide
0000000001001101 (V mode form)

Moves the contents of bits 1 to 16 of A into bits 17 to 32 of L.
Extends the sign contained in bit 1 of A into bits 2 to 16 of A.
Leaves the values of CBIT, KENK, and the condition codes unchanged.

▶ PIDL
Position for Integer Divide Long
0000000011000101 (V mode form)

Moves the contents of L into E and extends the sign contained in bit 1
of L into bits 2 to 32 of L. Leaves the values of CBIT, KENK, and the
condition codes unchanged.

S e c o n d E d i t i o n 2 - 8 4

S, R, AND V MODE

^ PIM
Position After Multiply
OOOOOOOOIOOOOIOI (S, R mode form)

Moves bits 2 to 16 of B into bits 2 to 16 of A. This converts a 31-bit
integer to a 16-bit integer. Leaves the values of CBIT, KENK, and the
condition codes unchanged. Overflow does not cause an integer
exception.

^ PIMA
Position After Multiply
0000000000001101 (V mode fo rm)

Moves bits 17 to 32 of L into bits 1 to 16 of A. This converts a
32-bit integer to a 16-bit integer. An integer exception occurs if
there is an overflow. (This occurs if bits 1 to 17 of L contain a
value other than all zeros or all ones before the move.) If no integer
exception occurs, CBIT is reset to 0. The values of KENK and the
condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
iiistruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of L in A, PIMA can modify all 32
bits of L. Since A and B overlap L, this swap means that the
contents of B axe indeterminate at the end of this instruction.

^ PIML
Position After Integer Multiply Long
0 0 0 0 0 0 0 0 11 0 0 0 0 0 1 (V m o d e f o r m)

Moves the contents of bits 1 to 32 of E into bits 1 to 32 of L. This
converts a 64-bit integer to a 32-bit integer. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes axe indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2 - 8 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ PRTN
Procedure Return
O O O O O O O l l O O O l O O l (V m o d e f o i m)

Deallocates the stack frame created for the executing procedure and
returns to the environment of the prooedure that called it.

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. It then restores the
caller's state by loading the caller's program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets bits 15 to 16 of the keys to 0.

Loads the ring number in the program counter with the current ring
number to allow outward returns but prevent inward returns.

^ FTLB
Purge TLB
0 0 0 0 0 0 0 0 0 0 11 0 1 0 0 (V m o d e f o r m)

L contains the address of a physical page, right justified. Based on
the value of L bit 1, PTLB purges either the first 128 locations or a
single location. If L bit 1 contains a 1, the instruction performs a
complete purge. If L bit 1 contains a 0, the instruction purges the
page specified by L. Leaves the values of CBIT, KENK, and the
condition codes indeterminate. See Chapters 1, 4, and 11 of the System
Architecture Reference Guide for more information about the STLB and
IOTLB.

Note

This is a restricted instruction.

Qn the 750, 850, and 2350 to 9955 II, insert a CRE (Cleax E)
instruction before PTLB. Since PTLB uses E as a pointer, the
CRE zeros E before PTLB manipulates it. If an interrupt occurs
during PTLB's execution, E points to the location PTLB is
currently purging. PTLB leaves the contents of E in an
undefined state at the end of its execution.

S e c o n d E d i t i o n 2 - 8 6

S, R, AND V MODE

▶ QFAD address
Quad Precision Floating Add
I X O l O l l l O O O Y l O B R \ 2 (V m o d e l o n g)
DISPLACEMENTS
O O O O O O O O O O O O O O I O

Calculates an effective address, EA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the Sjystem Architecture Reference Guide.)
Normalizes the result and loads it into QAC. An overflow or underflow
causes a floating-point exception. If no floating-point exception
occurs, the instruction resets CBIT to 0. The values of KENK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFCM
Quad Precision Floating Complement
11 0 0 0 0 0 1 0 1111 0 0 0 (V m o d e f o r m)

Forms the two's complement of the value contained in QAC and normalizes
it if necessary. (See Chapter 6 of the System Architecture Reference
Guide.) Stores the result in QAC. An underflow or overflow causes a
floating-point exception. If no floating-point exception occurs,
resets CBIT to 0. The values of LINK and the condition codes are
_j3determi_aate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFCM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2 - 8 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ QFCS address
Quad Precision Floating Point Compare and Skip
IX010111000Y10 BR\2 (V mode l ong)
DISPLACEMENTS
O O O O O O O O O O O O O l l O

Calculates an effective address, EA. Compares the contents of QAC (see
Chapter 6 of the System Architecture Reference Guide) to the 112-bit
contents of the location specified by EA and skips as shown below.

C o n d i t i o n S k i p

Q A C > E A c o n t e n t s . N o s k i p .

QAC = EA contents. Skip 16 bits (one halfword).

QAC < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.
Qn some processors, QFCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers axe compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnoimalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

If QFCS is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFDV address
Quad Precision Floating Point Divide
IX010111000Y10 BR\2 (V mode l ong)
DISPLACEMENTS
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Calculates an effective address, EA. Divides the contents of QAC by
the 112-bit contents of the location specified by EA. Normalizes the
result and stores the whole quotient into QAC. An overflow, underflow,
or divide by 0 causes a floating-point exception. If there is no
floating-point exception, resets CBIT to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

S e c o n d E d i t i o n 2 - 8 8

S, R, AND V MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QFLD address
Quad Precision Floating Point lead
IX010111000Y10 BR\2 (V mode l ong)
DISPLACEMENTS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Calculates an extended, augmented effective address, EA. Performs one
of the following actions with the value contained in the location
specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, no normalization
occurs. (See Chapter 6 of the System Architecture Reference Guide for
more information.) Leaves the values of CBIT, KENK, and the condition
codes unchanged.

Note

If QFLD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QFLX address
Quad Precision Floating Point Load Index
I 0 11 0 111 0 0 0 Y 11 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA to the left three times to multiply the
contents by eight. Shifts in zeros on the right and shifts data out on
the left first through bit 2 and then bit 1. Leaves the values of
CBIT, KENK, and and the condition codes unchanged.

Note

QFLX cannot do indexing. See Appendix B for more information.

If QFLX is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2 - 8 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ QFMP address
Quad Precision Floating Point Multiply
IXO lO l l lOOOYlO BR\2 (V mode l ong)
DISPLACEMENTS
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Calculates an effective address, EA. Multiplies the contents of QAC by
the 112-bit contents of the location specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result if
necessary and stores it into QAC. An overflow or underflow causes a
floating-point exception. If there is no floating-point exception, the
instruction resets CBIT to 0. The values of KENK and the condition
codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFMP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QFSB address
Quad Precision Floating Point Subtract
IXO lO l l lOOOYlO BR\2 (V mode l ong)
DISPLACEMENTS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Calculates an effective address, EA. Subtracts the contents of the
locations specified by EA from the 112-bit contents of QAC. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result if necessary and loads it into QAC. An overflow or underflow
causes a floating-point exception. If there is no floating-point
exception, the instruction resets CBIT to 0. The values of KENK and
the condition codes are Indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

S e c o n d E d i t i o n 2 - 9 0

S, R, AND V MODE

Note

If QFSB is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFST address
Quad Precision Floating Point Store
IXOlOlllOOOYlO BR\2 (V mode long)
DISPLACEMENTS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Calculates an effective address, EA. Stores the 128-bit contents of
QAC into the 128 bits of memory specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QINQ
Quad to Integer, in Quad Convert
1100000101111010 (V mode fo rm)

Strips the fractional portion of QAC as described in Table 2-4.

2 - 9 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 2-4
QINQ Actions

Exponent Value A c t i o n 1

'337 <= Exp N o o p e r a t i o n . I

'200 < Exp < '337 If sign >= 0, strip fractional paxt of QAC 1
f o r r e s u l t . 1

If sign < 0 and fractional part <> 0, strip I
fractional paxt of QAC and increment 1
i n t e g e r p o r t i o n o f Q A C b y 1 . 1

If sign < 0 and fractional paxt = 0, no I
a c t i o n i s d o n e . 1

'200 = Exp I f s i g n > = 0 , r e s u l t = 0 . 1
If sign < 0 and bits 2 to 96 = 0, result = -1.1
If sign < 0 and bits 2 to 96 <> 0, result = 0.1

'200 > Exp R e s u l t = 0 . I

The QINQ instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to 0. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QINQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QIQR
Quad to Integer, in Quad Convert Rounded
11 0 0 0 0 0 1 0 1111 0 11 (V m o d e f o r m)

Strips the fractional portion of QAC as described in Table 2-5.

Second Edition 2-92

S, R, AND V MODE

Table 2-5
QIQR Actions

Exponent Value Act ion

'337 <= Exp

'177 < Exp < '337

Exp = '177

No operation.

If sign >= 0, round.*
If sign < 0 and fractional paxt <> 0.5,**

round and strip the fractional paxt
of QAC.

If sign >= 0, result = 0.
If sign < 0 and bits 2 to 96 = 0, result = -1.
If sign < 0 and bits 2 to 96 <> 0, result = 0.
For all cases increment integer paxt by 1 if

it exists and the most significant bit of
QAC = 1.

Exp < '177 I The result is 0.

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
in teger.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = 0.

The QIQR instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to 0. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
informat ion.

Note

If QIQR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-93 Second Edition

INSTRUCTION SETS GUIDE

▶ RBQ address
Remove Entry From Bottom of Queue
11 0 0 0 0 1111 0 0 11 0 1 (V m o d e f o r m)
AP\32

The address pointer in this instruction points to the QCB for a queue.
The instruction removes the entry from the bottom of the referenced
queue and loads it into A. If the queue is not empty, sets the
condition codes to NE; if empty, resets A to 0 and sets the condition
codes to EQ. Leaves the values of CBIT and KENK unchanged.

^ RGB
Reset CBIT to 0
1100000010000000 (S, R, V mode form)

Resets CBIT to 0. Leaves the values of LINK and the condition codes
unchanged.

^ RMC
Reset Machine Check Flag to 0
0000000000010001 (S, R, V mode form)

Resets the MCM flag (bits 15 to 16 of the modals) to 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged. Inhibits
interrupts during execution of the next instruction.

Note

This is a restricted instruction.

▶ RRST address
Restore Registers
0000000111001111 (V mode fo rm)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-6. Restores the contents of the general, floating,
and XB registers from this save area. Bits 1 to 16 of the save area
axe a save mask, whose format appears in Figure 2-4. A mask bit value
of 1 means that the corresponding register had nonzero contents that
have been saved in the save area; a mask bit value of 0 means that the
corresponding register's contents were 0. Leaves the values of CBIT,
KENK, and the condition codes unchanged.

S e c o n d E d i t i o n 2 - 9 4

S, R, AND V MODE

Table 2-6
RRST Save Area Format

Offset # C o n t e n t s I

1 Save mask i
2 to 5 F R I (F) l
6 to 9 F R O 1

10 to 11 X , (3 R 7 1
12 to 13 G R 6 1
14 to 15 Y, S, C.R5 1
15 to 17 G R 4 1
18 to 19 E , (3 * 3 1
20 to 21 A, B, L, GR2 1
22 to 23 G R 1 1
24 to 25 (3 R 0 1
26 to 27 X B 1

1 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 I F R 1 I F R 0 I X I - I Y I - I E I L , B , A I I

Save Mask Foimat, RRST and RSAV Instructions
Figure 2-4

▶ RSAV address
Save Registers
0 0 0 0 0 0 0 1 1
AP\32

1001101 (V mode form)

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-7. Bits 1 to 16 of the save area are a save mask,
whose format appears in Figure 2-5. This instruction sets the mask bit
of each register as follows: to 1 if the register's contents have a
nonzero value; to 0 if a 0 value. Saves the nonzero contents of the
general, floating, and XB registers in the save area. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

2-95 Second Edition

INSTRUCTION SETS GUIDE

Table 2-7
RSAV Save Area Format

Offset # C o n t e n t s I

1 Save mask I
2 to 5 FRI (F) 1
6 to 9 F R O 1

10 to 11 X, C_R7 1
12 to 13 (- R 6 1
14 to 15 Y, S, GR5 1
15 to 17 G R 4 I
18 to 19 E, GR3 1
20 to 21 A, B, L, GR2 1
22 to 23 G U 1
24 to 25 G R O 1
26 to 27 X B 1

1 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0000 1 FRI 1 FRO 1 X 1 - Y 1 - 1 E 1 L,B,A 1 1

Save Mask Format, RRST and RSAV Instructions
Figure 2-5

▶ RTQ address
Remove Entry From Top of Queue
1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0
AP\32

(V mode form)

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into A. If the queue is empty, the instruction resets A to 0
and the condition codes to EQ; if not empty, sets the condition codes
to NE. Leaves the values of CBIT and LINK unchanged.

^ RTS
Reset Time Slice
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 (V m o d e f o r m)
Valid for the 550-11, 750, 850, 1450, and new processors.

The A register contains a negative value representing the number of
milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds until zero, when the time

Second Edition 2-96

S, R, AND V MODE

slice ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.
RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of A from the sum of the timers.
Stores the result in the elapsed timer. Loads the contents of A into
the interval timer. Leaves the contents of A unchanged. The values of
CBIT, LINK, and the condition codes are unchanged.
The addition performed by this instruction is equivalent to the
following series of instructions.

Tm ITH /* load A with the contents of ITH
SUB RV /* subtract reset value (in RV) from contents of A
PIDA /* sign extend the contents of A into L bits 17 to 32
SRC /* skip next 16-bit halfword if CBIT is 0 (no overflow)
CMA /* complement A
AEL ET /* add contents of L and contents of ET
STL ET /* store contents of L in ET
LDA RV /* load A with reset value
STA ITH /* store the reset value into ITH

Note
RTS is a restricted instruction.

2 - 9 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

)▶ SIA
Subtract 1 From A
IIOOOOOOOIOOIOOO (S, R, V mode form)

Subtracts 1 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15), an integer exception occurs, and
the instruction loads (2**15)-1 into A. If no overflow occurs, the
instruction resets CBIT to 0. LINK contains the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

^ S2A
Subtract 2 From A
1100000011001000 (S, R, V mode form)

Subtracts 2 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15)-1 or -2**15, an integer exception
occurs and the instruction loads (2**15)-1 or (2**15)-2, respectively,
into A. If no overflow occurs, the instruction resets CBIT to 0. LINK
contains the borrow bit. The condition codes reflect the result of the
operation. (See Appendix A.)
If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ SAR n
Skip on A Register Bit Reset to 0
1 0 0 0 0 0 0 0 1 0 1 1 N\4 (S, R, V mode form)

Skips the next 16-bit halfword if bit n in register A contains 0.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of 0 indicates bit 1; 1, bit 2;
and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

S e c o n d E d i t i o n 2 - 9 8

S, R, AND V MODE

▶ SAS n
Skip on A Register Bit Set to 1
100000101011 NV4 (S, R, V mode form)

Skips the next 16-bit halfword if bit n in register A contains 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of 0 indicates bit 1, and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

▶ SEL address
Subtract Long
IX011111000Y11 BR\2 (V mode fo rm)
DISPLACEMENTS

Calculates an effective address, EA. Subtracts the 32-bit integer in
the location specified by EA from the contents of L. Stores the
results in L. If the result is greater than (2**31)-1, an integer
exception occurs and the instruction loads bit 1 of L with a 1 and bits
2 to 32 with (result - (2**31)).

If the result is less than -(2**31), an integer exception occurs and
the instruction loads bit 1 of L with a 0 and bits 2 to 32 with the
negative of (result + (2**31)).

If no overflow occurs, the instruction resets CBIT to 0. The
instruction loads LINK with the borrow bit. The condition codes
reflect the outcome of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ SCB
Set CBIT to 1
1100000110000000 (S, R, V mode form)

Sets the value of CBIT to 1. The value of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

2 - 9 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ SGL
Enter Single Precision Mode
OOOOOOOOOOOOOlOl (S, R mode form)

Enters single precision mode by resetting bit 2 of the keys to 0.
Subsequent LEIA, STA, ADD, and SUB instructions manipulate 16-bit
integers. Leaves the values of CBIT, KENK, and the condition codes
unchanged.

^ SGT
Skip on A Greater Than 0
1000000010010000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

▶ SKP n
Skip
1000000000000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the specified condition is
met. Leaves the values of CBIT, KENK, and the condition codes
unchanged.

This instruction allows you to test for several conditions. The table
below shows the conditions available to test and information about the
associated instruction.

S e c o n d E d i t i o n 2 - 1 0 0

S, R, AND V MODE

Table 2-8
SKP Conditions

Mnem Opcode C o n d i t i o n I

NOP 101000 N o o p e r a t i o n . 1
SKP 100000 U n c o n d i t i o n a l s k i p . I
SLT 101400 Skip on bit 1 of A equal to 1. I
SGE 100400 Skip on bit 1 of A equal to 0. I
SLN 101100 Skip on bit 16 of A equal to 1. 1
SLZ 100100 Skip on bit 16 of A equal to 0. i
SNE 101040 Skip on A n o t e q u a l t o 0 . i
SEQ 100040 Skip on A e q u a l t o 0 . I
SSI* 101020 Skip on sense switch 1 set to 1. i
SRI* 100020 Skip on sense switch 1 reset to 0. i
SS2* 101010 Skip on sense switch 2 set to 1. i
SR2* 100010 Skip on sense switch 2 reset to 0. i
SS3* 101004 Skip on sense switch 3 set to 1. i
SR3* 100004 Skip on sense switch 3 reset to 0. i
SS4* 101002 Skip on sense switch 4 set to 1. i
SR4* 100002 Skip on sense switch 4 reset to 0. I
SSS* 101036 Skip on any sense switches set to 1. i
SSR* 100036 Skip on all sense switches reset to 0.I
SSC 101001 Skip on C B I T s e t t o 1 . i
SRC 100001 Skip on C B I T r e s e t t o 0 . I

Note

*These are restricted instructions.

You do not have to specify the unique mnemonic to test a paxticulax
condition; you can specify the SKP mnemonic and give the correct bit
configuration for bits 7 to 16 of the desired test. Make sure that you
set bit 7 of the SKP instruction properly: if it contains a 1, the
skip occurs if any of the specified conditions axe true; if it
contains a 0, the skip occurs if all of the specified conditions are
false.

▶ SKS function,device
Skip on Condition Satisfied
0 1110 0 FUNCTICN\4 DEVTCE\6 (S, R mode form)

Tests for the condition specified in the function field of the
instruction. Leaves the values of CBIT, KENK, and the condition codes
unchanged. See Chapter 11 of the System Architecture Reference Guide
for more information.

2-101 Second Edition

INSTRUCTION SETS GUIDE

Note

SKS is a restricted instruction.

^ SLE
Skip if A Less Than or Equal to 01000001010010000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than or equal to 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ SLN
Skip on LSB of A Nonzero1000001001000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if bit 16 of A is 1. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

▶ SLZ
Skip on LSB of A Zero
1000000001000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the bit 16 in A equals 0.
Leaves the values of CBIT, KENK, and the condition codes unchanged.

^ SMCR
Skip on Machine Check Reset to 01000000010000000 (S, R, V mode form)

Skips the next 16-bit halfword if the machine check flag is 0. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processor is operating in machine check mode, this
instruction has no meaning; it executes as an unconditional
skip.

S e c o n d E d i t i o n 2 - 1 0 2

S, R, AND V MODE

▶ SMCS
Skip on Machine Check Set to 1
lOOOOOlOlOOOOOOO (S, R, V mode form)

Skips the next 16-bit halfword if the machine check flag is 1. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processer is operating in machine check mode, this
instruction has no meaning; it executes as a NOP.

^ SMI
Skip on A Minus
1000001100000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ SNZ
Skip on A Nonzero
1000001000100000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A axe not
equal to 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

▶ SPL
Skip on A Plus
1000000100000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A axe
greater than or equal to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

▶ SRC
Skip on CBIT Reset to 0
1000000000000001 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 0.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

2 - 1 0 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ SSC
Skip on CBIT Set to 1
lOOOOOlOOOOOOOOl (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

^ SSM
Set the Sign of A Minus
1100000101000000 (S, R, V mode form)

Sets bit 1 of A to 1. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ SSP
Set the Sign of A Plus
1100000001000000 (S, R, V mode form)

Sets bit 1 of A to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

▶ SSSN
Store System Serial Number
0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 (V m o d e f o r m)

This instruction is applicable only for the 2350 to the 9955 II. A
14-chaxacter system identifier programmed into the processor during
manufacturing consists of a 2-chaxacter plant location code followed by
a 12-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the iemaining halfwords axe
reserved for future expansion and are 0.

Leaves the values of CBIT, LINK, and the condition codes indetenninate.

Note

If SSSN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

S e c o n d E d i t i o n 2 - 1 0 4

S, R, AND V MODE

^ STA address
Store A Into Memory
I X O I O O I I O O O Y O O B R \ 2 (V m o d e l o n g)
DISPLACEMENT\16

I X O I O O I I O O O O O O C B \ 2 (R m o d e l o n g)
[DISPLACEMENTS]

I X 0 1 0 0 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the A
register in the location specified by EA. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

^ STAC address
Store A Conditionally
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 (V m o d e f o r m)
AP\32

Compares the contents of B with the contents of the location referenced
by the specified address pointer. If the two values are equal, the
instruction stores the contents of A into that referenced location. If
the two values are not equal, execution continues with the next
instruction. Leaves the values of CBIT and LINK unchanged. Sets the
condition codes to EQ if the store occurs and to NE if not.

The comparison and store will not be separated by execution of other
instructions. This means that no instruction can alter the contents of
the specified memory location between the compaxe and the store.

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a EMA, EMC, or EMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

^ STC fir
Store Character
0 0 0 0 0 0 1 0 11 0 1 F L R 0 1 0 (V m o d e f o r m)

If the contents of the specified FLR axe nonzero, the instruction
stores the contents of bits 9 to 16 of A into the chaxacter byte
pointed to by the appropriate FAR. Updates the contents of the
appropriate FAR so that they point to the next character. Decrements
the contents of the specified FLR by 1. Sets the condition code NE.

2 - 1 0 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

If the contents of the specified FLR are 0, the STC instruction sets
the condition code EQ and does not store a character.

The STC instruction leaves the values of LINK and CBIT unchanged.

Note

When the instruction specifies FLRO, FARO is used; FLRl, FAR1.

▶ STEX
Stack Extend
0 0 0 0 0 0 1 0 11 0 0 11 0 1 (V m o d e f o r m)

Extends the length of the procedure stack.

A and B contain a 32-bit number specifying the halfword size of the
extension. (A halfword is 16 bits.)

The firmware rounds up the number specified by A and B to an even
number of halfwords. The instruction uses this value to allocate a
block of memory to the prooedure stack. The extension and the initial
stack do not have to be contiguous, since there may not have been
enough room left in the initial stack to contain a complete frame.

The instruction returns a segment number/offset number in A and B that
specifies the starting address of the extension.

The extension is automatically deallocated when the current procedure
completes execution. There is no limit on the number of extensions you
can make.

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeterininate. See Chapters
8 and 10 of the Sjystem Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

▶ STFA fax,address
Store FAR
000000101101 FAR 000 (V mode form)
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of that FAR contains 0, the
instruction stores the first 32 bits (2 halfwords) of the pointer and
clears the pointer's extend bit to 0. If the bit number field of that
FAR does not contain 0, the instruction saves all 48 bits (three
halfwords) of the pointer and sets the pointer's extend bit to 1.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

S e c o n d E d i t i o n 2 - 1 0 6

S, R, AND V MODE

^ STL address
Store Long
IX010011000Y11 BR\2 (V mode form)
DISPLACEMENT\16

Calculates an effective address, EA. Stores the contents of L in the
32-bit location specified by EA. Leaves the values of CBIT, KENK, and
the condition codes unchanged.

^ STLC address
Store L Conditionally
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 (V m o d e f o r m)
AP\32

Calculates an effective address, EA. Stores the contents of L into the
32-bit location specified by EA if and only if the contents of the
specified location equal the contents of E. Leaves the values of CBIT
and LINK unchanged. The condition codes reflect the result of the
(Dompaxison. (See Appendix A.)

Note

This instruction is useful when two cooperating, sequential
processes axe manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a EMA, EMC, or EMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

^ STC-R address
Store L Into Addressed Register
IX001111000Y01 BR\2 (V mode fo rm)
DISPLACEMENTX16

Calculates a 32-bit (1-word) effective address, EA. Stores the
contents of L into the register location specified by the offset
portion of EA. Bit 2 and bit 12 of the offset portion of EA determine
the actions of this instruction as follows.

2 - 1 0 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

B i t 2 B i t 1 2 A c t i o n

1* Ignore bit 1 and bits 3 to 9. The offset
portion of EA specified an absolute register
number from 0 to '377.

0* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers '20 to '37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA
specify one of the registers 0 to '17 in the
current register set.

*This is a restricted instruction.

STLR leaves the values of CBIT and LINK unchanged; the values of the
condition codes axe indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

Note

Do not use the STER instruction to write into the keys or
modals. You can use LPSW or a mode control operation to change
either of these registers. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

In addition, do not change the contents of the procedure base
register (PB) with this instruction. Use either LPSW or a
control transfer. Loading any value other than 0 into PEL will
change future effective address calculations for the currently
running process.

▶ STPM
Store Processor Model Number
0000000000010100 (V mode form)

Stores the CPU model number and microcode revision number in an
8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field. The format of the field is shown in Table 2-9.

S e c o n d E d i t i o n 2 - 1 0 8

S, R, AND V MODE

Table 2-9
STPM Memory Field Format

I Halfword Name Descr ipt ion

1 1 to 2 Processor Contains a code spec i fy ing t h e m a c h i n e : I
Model OL - 400/500, no 15L - 9950 1
Number Rev B microcode 16L - 9650 1

IL - 400, Rev. B 17L - 2550 1
microcode 18L - 9955 1

2L - Reserved 19L - 9750 1
3L - 350 21L - 2350 1
4L - 450/550 22L - 2655 1
5L - 750 23L - 9655 1
6L - 650 25L - 2450 1
7L - 250 3QL - 9955 II 1
8L - 850 31L - 2755 1
9L - 250-11 34L - 6350 1

10L - 550-11 42L - 9755 1
11L - 2250

1 3 to 4 Microcode Offset 3:
Revision Bits 1 to 8 Reserved

Bits 9 to 16 Manufacturing microcode I
r e v i s i o n n u m b e r i

Offset 4:
Bits 1 to 16 Eng ineer ing m ic rocode 1

r e v i s i o n n u m b e r I

1 5 Processor Specifies options enabled for this machine: 1
T.JTIft Bits 1 to 15 Reserved; m u s t b e 0 1

Bit 16 M a r k e t i n g s e g m e n t 1
s p e c i fi c a t i o n b i t I

1 6 Extended To be implemented.
Microcode
ID

1 7 to 8 Reserved for future use.

This instruction leaves the values of CBIT, KENK, and the condition
codes unchanged.

Note

STPM is a restricted instruction.

2-109 Second Edition

IDE_R PB% + '25 / *
ADL = '10L / *
STL TEMPI / *
IDLR PB% + '30 / *
IAB / *
STA XB% + 2 / *
IAB / *
PIDA / *
ADL TEMPI,* / *
STL XB% + 0

INSTRUCTION SETS GUIDE

^ STTM
Store Process Timer
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 (V m o d e f o r m)

Valid for the 550-11, 850, 1450, and 2350 to 9955 II.

The current process time is represented by the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions.

Get PCB address.
Offset of elapsed time.
Elapsed time address -> Temp.
Read timer.
Store low order

16 bits.
Adjust

weighting.
Add elapsed time.

Leaves the values of the CBIT, KENK, and condition codes indeterminate.
This instruction is not implemented on the 2250.

▶ STX address
Store X
I0110111000Y00 BR\2 (V mode l ong)
DISPLACEMENTS

10110111000000 CB\2 (R mode long)
[DISPLACEMENTS]

I 0 1 1 0 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of X at the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

STX cannot directly specify indexing, though an address in the
indirection chain may do so in 16S mode. See Appendix B for
more information.

S e c o n d E d i t i o n 2 - 1 1 0

S, R, AND V MODE

!▶ STY
Store Y
I l l l O l l l O O O Y l O B R \ 2 (V m o d e f o r m)
DISPLACEMENTS

Calculates an effective address, EA. Stores the contents of Y at the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The STY instruction cannot do indexing. See Appendix B for
more information.

^ SUB address
Subtract
I X 0 11111 0 0 0 Y 0 0 B R \ 2 (V m o d e l o n g)
DISPLACEMENTS

1X011111000000 CB\2 (R mode l ong)
[DISP1_ACEMENT\16]

I X 0 1 1 1 DISPLACEMENTS (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit integer
contained in the location specified by EA and subtracts them from the
contents of A. Stores the results in A.

If the result is greater than or equal to 2**15, an integer exception
occurs and the instruction sets CBIT to 1 and loads bit 1 of A with a 1
and bits 2 to 16 with (result minus (2**15)).

If the result is less than -2**15, an integer exception occurs and the
instruction loads bit 1 of A with 0 and bits 2 to 16 with the negative
of (result + (2**15)).

If no overflow occurs, the instruction resets CBIT to 0. LINK contains
the carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2 - 1 1 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ SVC
Supervisor Call
OOOOOOOIOIOOOIOI (S, R, V mode form)

Supervisor call. Generates a directed fault. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

^ SZE
Skip on A Zero
1000000000100000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A equal 0.
Leaves the values of CBIT, KENK, and the condition codes unchanged.

S e c o n d E d i t i o n 2 - 1 1 2

S, R, AND V MODE

^ TAB
Transfer A to B
11 O O 0 0 0 O 11 0 0 11 0 0 (V m o d e f o r m)

Transfers the contents of A into B. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

^ TAK
Transfer A to Keys
0 0 0 0 0 0 1 0 0 0 0 0 11 0 1 (V m o d e f o r m)

Moves a copy of the contents of A into the keys. Loads CBIT, LINK, and
the condition codes as a result of the operation. Resets bits 15 to 16
of the keys to 0.

Note

If the new contents of the keys specifies a new addressing
mode, the new mode takes effect with the instruction
immediately following TAK.

^ TAX
Transfer A to X
11 0 0 0 0 0 1 0 1 0 0 0 1 0 0 (V m o d e f o r m)

Loads X with a copy of the contents of A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

^ TAY
Transfer A to Y
11 0 0 0 0 0 1 0 1 0 0 0 1 0 1 (V m o d e f o r m)

Loads Y with a copy of the contents of A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

▶ TBA
Transfer B to A
11 0 0 0 0 0 11 0 0 0 0 1 0 0 (V m o d e f o r m)

Transfers a copy of the contents of B to A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2 - 1 1 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ TCA
Two's Complement A
1100000100000111 (S, R, V mode form)

Forms the two's complement of the contents of A and stores the result
in A. If the number to be complemented is -2**15, an integer exception
occurs and the instruction loads -2**15 into A. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the
caxry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ TGL
Two's Complement Long
1100001010001000 (V mode form)

Forms the two's complement of the contents of L and stores the result
in L. If the number to be complemented is -2**31, an integer exception
occurs and the instruction loads -2**31 into L. If no integer
exception occurs, the instruction resets CBIT to 0. KENK contains the
carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)
If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more infoimation.

^ TFLL firTransfer FLR to L
000000101101F1_R011 (V mode form)

Transfers the contents of the specified FER into L as an unsigned,
32-bit integer. Clears bits 1 to 11 of L to 0. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

%> TKA
Transfer Keys to A
0000001000000101 (V mode form)

Moves a copy of the keys into A. Leaves the values of CBIT, KENK, and
the condition codes unchanged.

S e c o n d E d i t i o n 2 - 1 1 4

S, R, AND V MODE

▶ TLFL fir
Transfer L to FLR
OOOOOOlOl 101FLR001 (V mode form)

Transfers the 32-bit unsigned integer contained in L into the specified
FLR. Clears bits 1 to 11 of L to 0 so that bits 1 to 6 of the
specified FT_R will be 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction allows you to load the specified FLR with a
value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment.

^ TSTQ address
Test Queue
11 0 0 0 0 11111 0 1111 (V m o d e f o r m)
AP\32

The address pointer in this instruction is to the QCB of a queue. This
instruction tests the referenced queue and sets A to equal the number
of items in the queue. Sets the condition codes to BQ when the queue
is empty. If the queue is not empty, sets the condition codes to NE.
Leaves the values of CBIT and LINK unchanged.

▶ TXA
Transfer X to A
1100001000011100 (V mode fo rm)

Transfers a copy of the contents of X to A. Leaves the values of CBIT,
KENK, and the condition codes unchanged.

^ TYA
Transfer Y to A
1100001001010100 (V mode fo rm)

Transfers a copy of the contents of Y to A. Leaves the values of CBIT,
KENK, and the condition codes unchanged.

2 - 1 1 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ WAIT address
Wait
O O O O O O O O l l O O l l O l (V m o d e f o r m)
AP\32

The address pointer in this instruction is to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than 0,
either the resource is not available, or the event has not occurred.
The instruction removes the PCB from the ready list, suspending the
process, and adds it to the wait list associated with the semaphore.
It then makes the register set available, turns off the prooess timer,
and goes to the dispatcher to find another process to run. The
dispatcher enables interrupts.
If C is less than or equal to 0, the currently executing process
continues.

If the instruction places the PCB on the wait list, no general
registers are saved. This means that a process cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Leaves CBIT, KENK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 2 - 1 1 6

S, R, AND V MODE

▶ XAD
Decimal Add
O O O O O O I O O I O O O O O O (V mode form)

Performs a decimal arithmetic operation under control of FARO, FAR1,
and L.

FARO contains the address of field 1. FAR1 contains the address of
field 2. L contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
2-10.

Table 2-10
XAD Decimal Operations

B c Operation Etestination 1

0 0 +F1+F2 F 2 I
0 1 +F1-F2 F 2 1
1 0 -F1+F2 F 2 1
1 1 -F1-F2 F 2 1

The scale differential field in the control word .specifies the
difference in the decimal point alignment between Fl and F2:

SD Relation of Fl and F2

S D > 0 F l > F 2

S E N D F l = F 2

S D < 0 F l < F 2

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

If the add operation results in an overflow, a decdmal exception
occurs. If no overflow occurs, the instruction sets CBIT to 0 to
indicate success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

2-117 Second Edition

INSTRUCTION SETS GUIDE

The registers used axe GRO, GR1, (5R3 (E), GR4, C_R6, FARO, FAR1, F_.RO,
and F1R1. At the end of the XAD instruction, the contents of these
registers is indeterminate. The value of LINK is indeterminate. Tne
condition codes reflect the state of F2 after the decimal operation.
(See Appendix A.)

▶ XBTD
Binary to Decimal Conversion
0000001001100101 (V mode form)

Converts a binary number to a decimal number. FARO contains the
decimal field address. L contains the control word.

This instruction uses fields A, E, and H in the control word. H
specifies the length of the binary number and its location:

H L e n g t h L o c a t i o n

0 16 bits EH register

1 32 b i ts E register

2 64 bits DAC register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Overflow results in a
decimal exception. If no overflow occurs, the instruction resets CBIT
to 0. Leaves the value of LINK indeterminate. The values of the
condition codes axe indeterminate.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, and FLRO. At
the end of the instruction, the contents of these registers axe
indeterminate.

When the source register contains a null string, the destination
register will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FAC1.

S e c o n d E d i t i o n 2 - 1 1 8

S, R, AND V MODE

▶ XCA
Exchange and Cleax A
llOOOOOOOlOOOlOO (S, R, V mode form)

Interchanges the contents of registers A and B, then clears A to 0.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

▶ XCB
Exchange and Cleax B
1100000010000100 (S, R, V mode form)

Interchanges the values of A and B and then clears B to 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

^ XCM
Decimal Compare
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 (V m o d e f o r m)

Compares two decimal numbers and sets the condition codes depending on
the result of the compare.

FARO contains the address of field 1 (Fl). FAR1 contains the address
of field 2 (F2). L contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

Compares the two specified numbers. The instruction uses the G field
of the control field to adjust the two numbers before the compaxe:

G D e c i s i o n

>0 Low-order digits of Fl only affect the initial borrow
from the low-order digit of F2.

<0 Assume Fl is zero-extended with low zeros.

The registers used are C3R0, GR1, (3*3 (E), (314, (-R6, FERO, and FER1. At
the end of this instruction, the contents of these registers axe
indeterminate. The CBIT is reset to 0 when there is no decimal
exception. (This instruction cannot cause a decimal exception.)
Leaves the value of LINK indeterminate. The condition codes reflect
the result of the compare, as follows.

2 - 1 1 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

CC Test Result

GT F2 > Fl

EQ F2 = Fl

LT F2 < Fl

^ XDTB
Decimal to Binary Conversion
0000001001100110 (V mode fo rm)

Converts a decimal string to a binary string.

FARO contains the address of the decimal string. L contains the
control word; this instruction uses the A, E, and H fields. Field H
specifies the length of the binary string and its location:

H Leng th Des t ina t ion Reg is te r

0 0 1 6 b i t s A r e g i s t e r

0 1 3 2 b i t s L r e g i s t e r

1 0 6 4 b i t s L I E

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. Leaves the value of LINK unchanged. The values of
the condition codes are indeterminate.

The registers used axe CRD, GR1, GRZ (E), (314, CRB, FARO, and FLRO. At
the end of this instruction the contents of these registers axe
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a clecimal exception fault. See Chapter 10 of
the Sjystem Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FAC1.

S e c o n d E d i t i o n 2 - 1 2 0

S, R, AND V MODE

▶ XDV
Decimal Divide
OOOOOOlOOlOOOl l l (V mode fo rm)

Divides a decimal number, D2, by another, DI, and stores the quotient
and reneinder in the location of D2.

FARO contains the address of DI. FAR1 contains the address of D2. L
contains the control word; this instruction uses fields A, B, C, E, F,
H, and T.

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeros equal to the length
of DI.

The instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (132 length - DI length)
followed by the remainder of length (DI length). Since D2 had leading
zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used axe GRO, GR1, GR3 (E), (314, CRB, FARO, FAR1, FI_R0,
and FLR1. At the end of this instruction, the contents of these
registers are indeteiminate.
If DI is 0, overflow occurs which causes a decimal exception. .Decimal
exceptions also occur if DI or D2 have the incorrect data type or if
the length of D2 is less than that of DI. If no overflow occurs, CBIT
is reset to 0. At the end of the instruction, LINK and the condition
codes contain undefined results.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

^ XEC address
Execute
IX000111000Y10 BR\2 (V mode l ong)
DISPLACEMENTS

1X000111000010 CB\2 (R mode long)
[DISPLACEMENTS]

Calculates an effective address, EA. Executes the instruction found at
EA, but does not transfer control to that location. Leaves the values
of CBIT, LINK, and the condition codes modified as specified by the
executed instruction.

2 - 1 2 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

The XEC instruction has limited application since all instructions
cannot be executed in this way. The XEC instruction is useful for
16-bit register generic instructions such as shifts, rotates, clears,
interchanges, and NOPs.

The following instruction types should not be used with XEC since they
may not execute properly or will produce undefined results:
instructions that change the address mode, program counter, or
instruction stream; instructions that cause arithmetic faults;
decimal or character instructions; and generic skips.

P> XED
Numeric Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 (V m o d e f o r m)

Edits the contents of a string under control of a subprogram.

The registers used are L, XB, FARO, FAR1, and FERO. At the end of the
instruction, the contents of these registers and the CBIT, LINK, and
condition codes are indeterminate.

FARO contains the address of the source string. The souroe string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

FAR1 contains the address of the destination string. Bits 1 to 8 of A
contain the floating character; bits 9 to 16, the status register.
Bits 1 to 8 of B contain the number of remaining bytes to be processed
(used if a fault or interrupt occurs). Bits 9 to 16 of B contain the
suppression character whose initial value is determined by bit 12 of
the keys ('240 if bit 1 contains 0; '40 if bit 12 contains 1). XB
contains the address of the edit subprogram.

The instruction uses an edit subprogram to alter a souroe string and
store the edit result in a destination location(s). To set up, perform
a decimal move to correct the type, alignment, and length of the number
to be edited. Next, use a LCEQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 2-6.

S e c o n d E d i t i o n 2 - 1 2 2

S, R, AND VMOEE

12 3 4

L I 00 I

8 9 16
E M

Edit Subprogram Halfword Format
Figure 2-6

where L is 1 if this 16-bit halfword is the last halfword
in the subprogram,

0 if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

The XED instruction uses several variables internally to control the
edit subprogram. These axe shown in Table 2-11.

Table 2-11
XED Internal Variables

Vax I Definition

SC i Zero suppression chaxacter; contained in B. Initial
value is the space character ('240 or '40, depending
on whether bit 12 of the keys contains 0 or 1.

PC I Floating edit character; contained in A. Initial
value is not defined.

SIGN I Sign of the souroe field. The first chaxacter fetch
sets up the value of this variable.

SIG I End zero suppression flag.

There axe 17 edit suboperators, shown in Table 2-12.

2-123 Second Edition

INSTRUCTION SETS GUIDE

Table 2-12
XED Suboperators

I Subop Mnem 1

l 00 ZS 1

1 01 IL 1

1 02 SS 1

1 03 ICS 1

1 04 ID 1

1 05 ICM 1

1 06 ICP 1

1 07 SFC 1

1 10 SFP 1

1 11 SFM 1

Zero Suppress. Fetches M digits from the source
field consecutively, each time checking SIG. If
SIG is 1, copies the digit into the destination
string. If SIG is 0 and the digit is not 0,
inserts the floating character (if defined)
and copies the digit into the destination field.
If SIG is 0, the digit is not 0, and the
floating chaxacter is not defined, sets the SIG
flag and copies the digit into the destination.
If SIG and the digit are both 0, substitutes
SC for the 0 digit in the destination field.

Insert Literal. Copies M into the
destination string. Increments XB and FAR1 by 1.

Set Suppress Character. Sets SC to M and
increments XB by 1.

Insert Character. If SIG is 1, copies M into the
destination string. If SIG is 0, copies SC into
the destination string. Increments XB and FAR1
by 1.

Insert E)igits. If SIG is 0, and FC is defined,
copies FC and M digits into the destination field
then sets SIG to 1. Increments XB by 1, FPRD by
M, and FAR1 by M+l. If SIG is 0 and PC is not
defined, sets SIG to 1 and copies M digits from
the source to the destination; increments XB by
1 and both FARO and FAR1 by M. If SIG is 1,
copies M digits from the source to the
destination and increments XB by 1 and both FARO
and FAR1 by M.

Insert Character if Minus. If SIGN = 1, copies
M into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FAR1 by 1.

Insert Character if Plus. If SIGN = 0, copies M
into the destination string. If SIQT = 1,
copies SC into the destination string.
Increments both SB and FAR1 by 1.

Set Floating Chaxacter. Sets FC to M and
increments XB by 1.

Set Floating if Plus. If SIGN = 0, sets FC to M.
If SIGN = 1, sets FC to SC. Increments XB by 1.

Set Floating if Minus. If SIGN = 1, sets PC to M.
If SIGN = 0, sets PC to SC. Increments XB by 1.

Second Edition 2-124

S, R, AND V MODE

Table 2-12
XED Suboperators (continued)

I Subop Mnem I

1 12 SFS 1

1 13 JZ 1

1 14 FS 1

1 15 SF 1

1 16 IS 1

1 17 SD 1

1 20 EBS 1

Set Floating to SIGN. If SIGN = 0, sets PC to
'253. If SIGN = 1, sets FC to '255. Increments
XB by 1.

Jump if Zero. If the condition flag in A = 0,
increments XB by 1. If the condition flag in A
= 1, adds M to XB and then increments XB by 1.

Fill with Suppression Chaxacters. Copies SC
M times into the destination string. Increments
XB by 1 and FAR1 by M.

Set Significance. If SIG = 0 and PC <> 0, inserts
PC into the destination string, sets SIG to 1,
and increments XB and FAR1 by 1. If SIG = 0 and
PC = 0, sets SIG to 1 and increments XB and FAR1
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = 0, copies '253 into the
destination string. If SIGN = 1, copies '255
into the destination string. Increments XB by 1.

Suppress Digits. Fetches M digits from the source
string and checks if they are '260. If the souroe
digit = '260, inserts SC into the destination
string. If the souroe digit <> '260, copies the
souroe digit into the destination string.
Increments XB by 1 and both FARO and FAR1 by M.

Embed Sign. Fetches M digits from the source
string. If SIGN = 0, copies each digit into the
destination string. If SIGN = 1, embeds a minus
sign into each digit before copying it into the
destination string. Table 6-15 shows the
chaxacters used to represent the sign/digit
combinations. A } symbol represents negative 0.

2-125 Second Edition

INSTRUCTION SETS GUIDE

▶ XMP
Decimal Multiply
O O O O O O I O O I O O O I O O (V m o d e f o r m)

Multiplies one decimal number, M, by another, DI, and stores the result
in D2's location in memory. M is right justified in field D2 at the
start of the operation.

FARO contains the address of DI. FAR1 contains the address of D2. L
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Field G, the scale differential, must contain the number
of decimal digits in M.

The number of decimal digits in D2 is greater than or equal to the
number of decimal digits in DI plus the number of decimal digits in M
(specified by G). Normally, the digits to the left (more significant
side) of M axe zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by DI and stores the result in the
location specified by FAR1. The result of the multiply is:

DI x M + partial product field

The partial product field is equal to:

length(D2) - M.
The partial product field is left justified in D2's location. The
maximum partial product added in per traverse of the multiplicand is:

souroe digits + multiplier digits processed

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits

If the T bit is set to 1, the results axe forced positive. See Chapter
6 of the System Architecture Reference Guide for more information about
decimal arithmetic.

A decimal exception occurs if there axe more potential or actual
product digits than there is space in D2.

The registers used axe GRO, GR1, CRZ (E), (314, GR6, FARO, FAR1, and XB.
At the end of this instruction, the contents of these registers axe
indeteiminate. Overflow causes a decimal exception; if no overflow
occurs, resets CBIT to 0. KENK contains undefined results. At the end
of the instruction, the condition codes reflect the state of the
result. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a 0, the
XMP instruction sets CBIT to 1. If bit 11 contains a 1, the

S e c o n d E d i t i o n 2 - 1 2 6

S, R, AND V MODE

instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information.

▶ XMV
Decimal Move
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 (V m o d e f o r m)

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. L contains the control word; this
instruction uses fields A, B, D, E, F, G, H and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, changes the the sign of the source field during the move.
If the D field in the control word is 1 and the scale differential is
greater than 0, the instruction rounds the souroe field during the
move. If the scale differential (from the H field) is less than 0, the
instruction pads the source field with SD trailing zeros before
transferr ing.

Since the T bit is used by all systems for this instruction, the result
is forced positive if this bit is set to 1.

The registers used axe GRO, (3.1, GR2 (L), GR3 (E), (314, GR6, FARO,
FAR1, FLRO, and FIR1. At the end of this instruction, the contents of
these registers axe indeterminate.

A decimal exception occurs if there axe more non-zero souroe digits
than there is room in the destination, after any padding. If there is
no decimal exception, CBIT is reset to 0. Leaves the value of KENK
__ndeterininate. The values of the condition codes reflect the state of
the destination field after the move. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. If no exception
occurs, the instruction sets CBIT to 0. See Chapter 10 of the System
Architecture Reference Guide for more information about decimal
exceptions.

Note

The source and destination strings may not overlap in memory.

2 - 1 2 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ ZCM
Compare Chaxacter Field
0000001001001111 (V mode fo rm)

Compares two fields and sets the condition codes depending on the
result of the compare.

FARO contains the address of field 1 (Fl). FIRO contains an integer
specifying the length of Fl. FAR1 contains the address of field 2
(F2). FLR1 contains an integer specifying the length of F2.

The instruction compares the contents of Fl and F2 on a byte by byte
basis. If the fields axe not of equal length, the instruction
automatically extends the shorter string with space characters. A
space chaxacter is '240 or '40 when bit 12 of the keys contains 0 or 1,
respectively. Sets the condition codes as a result of the compare:

Result of Compaxe Set Condition Codes

Fl > F2 GT
Fl = F2 EQ
Fl < F2 LT

The registers used are GR3 (E), GR4, FARO, FAR1, FIRO, and FLR1; at
the end of this instruction, the contents of these registers are
indeteiminate.

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses (313, GR4, the FARs, and the FLRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZEDCharacter Field Edit
0000001001001001 (V mode form)

Controls an edit subprogram.

Uses the registers FARO, FAR1, FIRO, and XB. At the end of this
instruction the contents of these registers are indeterminate. Leaves
the values of CBIT, LINK, and the condition codes indeterminate.

S e c o n d E d i t i o n 2 - 1 2 8

S, R, AND V MODE

FARO contains the address of the souroe string. FLRO specifies the
length of the souroe string. FAR1 contains the address of the
destination string. XB contains the address of the edit subprogram.

The instruction uses the edit subprogram to alter the souroe string,
then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a list of
commands, each with the format shown in Figure 2-7:

1 2 6 7 8 9 1 6

I L I 0 0 0 0 0 I E I M I

ZED Subprogram Word Format
Figure 2-7

where L is 1 if this command is the last command in the subprogram,
0 if it is not;

E is the edit opcode;
M is the edit modifier.

Bits 2 to 6 must be 0.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 2-13.)

E, the edit suboperator, specifies the operation to be performed on the
souroe string. Available values for E are shown in Table 2-13.

2 - 1 2 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 3-16
ZED Suboperators

Subop I Value I Action
CPC I 00 I Copies characters from the source string into the

destination string. If the length of the source
string is greater than the contents of the M field,
then CPC moves a total of M souroe characters into
the destination string, increments FARO and FAR1 by
by M, increments XB by 1, and decrements FLRO by M.
If the length of the souroe string is less than the
the contents of the M field, then CPC moves the
rest of the souroe string into the destination
string, and then pads the remaining space to be
filled with spaces. (See note.) Increments FARO
by FLRO and FAR1 by M, increments XB by 1, and
and decrements FIRO by FLRO (so FLRO = 0).

INL J 01 I Inserts M into the destination string and
increments both XB and FAR1 by 1.

SKC I 10 I Skips characters in the souroe string. If the
remaining length of the souroe string is greater
than or equal to the contents of the M field, then
SKC skips over the next M chaxacters of the source
field lay incrementing FARO by M and decrementing
FLRO by M. If the remaining length of the souroe
string is less than the contents of the M field,
SKC skips over FLRO characters in the souroe string
ty incrementing FARO by FLRO and decrementing FIRO
ty FLRO (FE_R0 = 0). In either case, SKC increments
XB ty 1.

BI_K I 11 I Inserts M spaces (see note) into the destination
string, increments FAR1 by M, and increments XB
ty 1.

Note

A space is '240 or '40, depending on whether bit 12 of the keys
is 0 or 1. This instruction uses (313, (314, the FARs, and the
ELRs during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

Second Edition 2-130

S, R, AND V MODE

^ ZFIL
Fill Field With Character
0 0 0 0 0 0 1 0 0 1 0 0 111 0 (V m o d e f o r m)

Stores a character into a series of destination tytes.

Bits 9 to 16 of L contain the character to be stored. FAR1 contains
the starting address of the destination field (byte aligned). FLR1
contains an integer specifying the length of the destination field (in
bytes).

The instruction stores the character specified in L in each byte of the
destination field. If FIR1 contains 0, no operation takes place.
Leaves the values of CBIT, KENK, and the condition codes indeterminate.

The registers used axe (3*3 (E), (3*4, FARO, FAR1, FLRO, and FLR1; at
the end of this instruction, the contents of these registers axe
indeterminate.

Note

This instruction uses GRZ, QR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZMV
Move Character Field
0 0 0 0 0 0 1 0 0 1 0 0 11 0 0 (V m o d e f o r m)

Moves a character field from one location to another.

FARO contains the address of the source string (byte aligned). FLRO
specifies the length in bytes, N, of the souroe string. FAR1 contains
the address of the destination string (byte aligned). FIR1 specifies
the length in bytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the souroe string into the destination string followed by
M-N space chaxacters. (A space character is '240 or '40 when tut 12 of
the keys is 0 or 1, respectively.) If the destination string is
shorter, the instruction moves the first M chaxacters of the source
string into the destination string.

When the instruction completes, the values of FARO, FAR1, FLRO, FLR1,
CBIT, LINK, and the condition codes are i_ncleterminate.

2 - 1 3 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

The ZMV instruction uses (3*3, GR4, the PARs, and the FLRs
during its operation. Since ZMV does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

▶ ZMVD
Move Characters Between Equal Length Strings
0 0 0 0 0 0 1 0 0 1 0 0 11 0 1 (V m o d e f o r m)

Moves characters from one string to another of equal length.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. FLR1 contains the number of
characters to move, N.

The instruction moves N characters from the souroe string to the
destination string. Characters are moved from lower addresses to
higher addresses.

The registers used are (3*3 (E), (3*4, FARO, FAR1, FLRO, and FLR1; at
the end of this instruction, the contents of these registers axe
indeterminate. The values of CBIT, KENK, and the condition codes axe
indeterminate.

Note

The ZMV instruction uses (3*3, (3*4, the FARs, and the FIRs
during its operation. Since ZMVD does not save the.contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time. This instruction does not work with
overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

S e c o n d E d i t i o n 2 - 1 3 2

S, R, AND V MODE

^ ZTRN
Character String Translate
OOOOOOIOOIOOIOOO (V mode form)

Translates a string of chaxacters and stores the translations in the
specified destination.

FARO contains the address of the souroe string (tyte aligned). FAR1
contains the address of the destination string (tyte aligned). FLR1
specifies the length of the source and destination strings. XB
contains the starting address of a translation table. Each byte in the
256-byte table contains an alphabetic character.

The ZTRN instruction uses the address in FARO to reference a character.
It interprets this character as an integer, adding it to the contents
of XB to form an address into the translation table. The instruction
takes the referenced chaxacter in the translation table and writes it
into the location specified by FAR1. After storing the character, the
instruction increments the contents of FARO and FAR1 by 1, decrements
the contents of FLR1 by 1, and repeats the operation until FLR1
contains 0.

At the end of the instruction, FARO and FAR1 point to the location that
follows the last byte of the souroe and destination strings,
respectively. FLR1 contains 0. Leaves the values of XB, CBIT, LINK,
and the condition codes unchanged.

Note

This instruction uses (3*3, GR4, the FARs, and the FLRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

2 - 1 3 3 S e c o n d E d i t i o n

I Mode

INTRCEIUCTION

This chapter contains descriptions for all 50 Series instructions used
in I mode. In the description of each instruction, you will find:

• The instruction mnemonic followed by any arguments.

• The name of the instruction.

• The bit format of the instruction.

• Detailed information describing the instruction's action.

• Information about the how the instruction affects KENK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 3-1 defines the dictionary notation.

3 - 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 3-1
Dictionary Notation

Symbol M e a n i n g I

A T h e 1 6 - b i t A r e g i s t e r . i

ADERESS Encompasses all the elements needed to specify an i
effective address. This term is used because various I
addressing types require you to specify the elements i
in different orders (such as indirect or pre- and 1
p o s t - i n d e x i n g) . I

AP A d d r e s s p o i n t e r . 1

B T h e 1 6 - b i t B r e g i s t e r . I

BR B a s e r e g i s t e r . i

CBIT B i t 1 o f t h e k e y s . i

DAC The double precision floating-point accumulator with 48 I
bi ts of mant issa and 16 bi ts of exponent. 1

Displace
ment

The number of halfwords to be added to the base register 1
t o f o r m t h e e f f e c t i v e a d d r e s s . I

ER Dest ina t ion reg is ter (normal reg is ter spec ifier) . I

E T h e 3 2 - b i t E r e g i s t e r . i

EA E f f e c t i v e a d d r e s s . i

F F l o a t i n g - p o i n t a c c u m u l a t o r . I

FAC The single precision floating-point accumulator with 48 I
b i ts of mant issa and 16 b i ts of exponent . I

FAR F i e l d a d d r e s s r e g i s t e r . i

FIR F i e l d l e n g t h r e g i s t e r . i

(3*n A 32-bit general register, where n is 0 through 7. I

Halfword A 1 6 - b i t u n i t o f m e m o r y . 1

I I n d i r e c t b i t . I

L T h e 3 2 - b i t L r e g i s t e r . I

LINK Bit 3 of the keys. Not used in S and R modes. i

Second Edition 3-2

I MODE

Table 3-1 (continued)
Dictionary Notation

Symbol M e a n i n g 1
Offset The number of halfwords from the starting address of a I

s e g m e n t . i

PB T h e p r o c e d u r e b a s e r e g i s t e r . I

QAC The quad precision floating-point accumulator with 96 1
bits of mantissa and 16 bits of exponent. 1

R A 3 2 - b i t g e n e r a l r e g i s t e r . I

r B i t s 1 t o 1 6 o f a g e n e r a l r e g i s t e r . I

skip Skip next 16-bit halfword before continuing execution. 1

SR Source register (or index if memory reference). I

TM Tag modifier. Bits used in I mode effective address 1
calculation to specify indirection, indexing, etc. I

X T h e X r e g i s t e r (i n d e x i n g) . I

XB A u x i l i a r y b a s e r e g i s t e r . I

Word A 3 2 - b i t u n i t o f m e m o r y . 1

Y T h e Y r e g i s t e r (i n d e x i n g) . I

m\n Specifies the number of bits, n, occupied ty field m. I

[] S p e c i fi e s a n o p t i o n a l a r g u m e n t . i

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the prooessor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the prooessor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 3-2 lists the resumable assembly language instructions.

3-3 Second Edition

INSTRUCTION SETS GUIDE

Table 3-2
Resumable Instructions

Ins t ruc t ions

ARGT XAD XBTD XCM 1
XDTB XDV XED XMP 1
XMV ZCM ZED ZFIL 1
ZMV ZMVD ZTRN STEX 1

These instructions depend on the settings in certain registers to
determine whether they are being executed for the first or another
time. In addition, some registers may be used for intermediate
storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the 6350 and 9750 to 9955 II Instruction Stream

After any instruction that stores data into memory, you must wait five
instructions before executing data. If in doubt about the next five
instructions (temporally) to be executed, a mode change :instruction to
the current addressing mode, such as E32I, allows the stored data to be
executed.

Instruction Formats

All I mode instructions belong to one of the following instruction
types:

• I Mode Memory Reference

• I Mode Special Memory Reference

• I Mode Generic AP (Address Pointer)

• I Mode Register Generic

• I Mode Register Generic Branch

• Generic A and B (see below)

The format of each instruction type is shown in Figure 3-1.

Memory reference instructions have the opcode in bits 1 to 6. Special
memory reference instructions (for floating point) have the opcode in
bits 2, 3, 7, and 9; bit 8 specifies the floating accumulator. Some
memory reference and special memory reference instructions have

S e c o n d E d i t i o n 3 - 4

I MODE

register-to-register and/or immediate forms. Such instructions axe so
identified in this I Mode Instruction Dictionaxy.

The immediate form of a memory reference instruction has a 16-bit
literal in bits 17 to 32 instead of a 16-bit displacement.
Register-to-register forms axe 16 bits long, since they have no
displacement. Bits 7 to 9 specify the destination register and bits 12
to 14 specify the souroe register.

The immediate form of a special memory reference instruction has a
16-bit encoding in bits 17 to 32 instead of a 16-hit displacement. The
register-to-register form is 16 bits long, since it has no
displacement. Bit 8 specifies the floating-point destination
accumulator and bits 12 to 14 specify the index register or the
floating-point source register (in bit 13).

Generic AP instructions have a generic format (where bits 10 to 16
contain the opcode extension) followed ty a 32-bit address pointer.

Register generic instructions axe 16 bits long and have an opcode in
bits 10 to 16. The value of bits 1 to 6 is 011000; bits 7 to 9
specify a general register.

Register generic branch instructions are 32 bits long and have an
opcode in bits 10 to 16. The value of bits 1 to 6 is 00100; bits 7 to
9 specify a general register. Bits 17 to 32 contain a displacement.

Generic A and B instructions that do not reference the A, B, E, or L
registers are also used in I Mode. See Chapter 2, Figure 2-1 for the
format of these instructions. Instructions defined in I mode for this
class axe included in this instruction dictionary.

1 6 7 9 1 0 11 1 2 1 4 1 5 1 6 1 7 3 2

I OPCODE I DEST REG I TM I SOURCE REG CR INDEX I BR I DISP I

I Mode General Memory Reference Format*

This instruction type also has a register-to-register and
immediate form as explained in the text.

I Mode Instruction Formats
Figure 3-1

3 - 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

12 3 4 6 7 8 9 10 11 12 14 15 16 17 32

I 0 I OP I 110 I OP I DES F I OP I TM I SRC REG CR IDXI BR I DISP I

I Mode Special Memory Reference (Floating Point) Format*

12 3 4 6 7 9 10 11 12 14 15 16 17 32

1 I OP I 110 I OP I TM I REG CR INDEX I BR I DISPLACEMENT I

I Mode Special Memory Reference (General Register) Format

1 1 6

I GENERIC CR REGISTER GENERIC I

17 20 21 22 2 3 2 4 2 5 3 2 3 3 48
1 BIT 1 I 1 I BR 1 00000000 1 OFFSET

I Mode Generic AP Format

1 6 7 9 1 0 1 6

I 011000 I REG I OPCODE I

I Mode Register Generic Format

1 6 7 9 1 0 1 6 1 7 3 2

I 001000 I REG I OPCODE I DISPLACEMENT I

I Mode Register Generic Branch Format

* This instruction type also has a register-to-register and
immediate form as explained in the text.

I Mode Instruction Formats
Figure 3-1 (continued)

S e c o n d E d i t i o n 3 - 6

I MODE

INSTRUCTIONS

^ A R,address
Add Fullword
OOOOIO ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified ty EA and adds them to the contents of the
specified R. Stores the results in the specified R.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception occurs. If
the sum is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results axe of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ ABQ r,address
Add Entry to Bottom of Queue
0 1 1 0 0 0 R \ 3 1 0 1 1 1 0 0
AP\32

Adds the entry contained in the specified r to the bottom of the queue
referenced ty the AP. (AP points to the queue's QCB.) Sets the
condition codes to reflect EQ if the queue was full, or to NE if not
full. Leaves the values of CBIT and LINK unchanged.

3 - 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ ACP destination-R,souroe-R {~so*«ul £ «a^^1 <sha^ ^^^^
A d d C P o i n t e r - 1
10 110 1 ER\3 TM\2 SR\3 BR\2

Adds the two's complement number contained in the specified souroe R to
the C language pointer in the specified destination R. Stores the
result in the C pointer in the same destination R. Leaves the values
of the CBIT, LINK, and condition codes unchanged.

Addition is done to segment-number I of f set I byte, producing a new pointer
with an updated segment-number I offset I byte. Adding a positive integer
that causes the segment-number field to overflow will modify the ring
field. Adding a negative integer that causes the segment-number field
to underflow will also modify the ring field. R contents that do not
cause the segment number to overflow will not modify the ring field.
No overflow is detected or indicated.

Note

While of the memory referencing form, this instruction is only
defined for register-to-register and immediate address
formation. (See Appendix B.)

If ACP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ ADER R
Add LINK to Register
0 1 1 0 0 0 R \ 3 0 0 0 1 1 0 0

Adds the contents of LINK to the contents of R and stores the result in
R. If there is an overflow, an integer exception occurs. If no
integer exception occurs, CBIT is reset to 0. KENK contains the
caxry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

S e c o n d E d i t i o n 3 - 8

I MODE

▶ AH r,address
Add Halfword
OOIOIO ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified Toy EA and adds them to the contents of the
specified r. Stores the results in the specified r.

If the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 16 bits are the 16 LSBs of the
correct answer (that needs 17 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

^ AIP R,address
Add Indirect Pointer
11110 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Adds the value contained in the specified R to the 32-bit value
contained in the location specified by EA. Stores the result in the
specified R. Checks these contents for a pointer fault.
This pointer fault is generated when the contents of the memory
location to be added to the specified R contain a pointer fault (bit 1
contains 1).

If this pointer fault occurs, the pointer to the memory location is
saved in FADER (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FOODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

3 - 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

An overflow produces an integer exception. If no integer exception
occurs, CBIT is reset to 0. KENK contains the caxry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If hit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

Note

AIP should weaken the ring field against the ring field of the
effective address. This is not done on some current
processors, but will be done on all future processors.

If AIP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ ARFA fax.R
Add Register to FAR
011000 R\3 111 FAR 001

Adds the bit address in the specified R to the contents of the
specified FAR. Stores the result in the FAR. Leaves the values of
CBIT and KENK indeteiminate. Leaves the values of the condition codes
unchanged.

^ ARGT
Argument Transfer
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

Transfers arguments from a souroe procedure to a destination procedure.
ARGT is fetched and executed only when the argument transfer phase of a
procedure call (PCL) instruction is interrupted or faulted.
To perform a prooedure call and argument transfer, the source procedure
must contain the PCL instruction followed by a number of argument
templates. The destination prooedure must begin with the ARGT
instruction. When the PCL instruction is executed, control transfers
to the destination prooedure, and the ARGT instruction uses the
templates to form the actual arguments. The arguments axe stored in
the new stack frame as they are computed. At the end of the ARGT
instruction, the values of CBIT, KENK, and the condition codes are
indeterminate.

ARGT must be the first executable instruction in any destination
procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you must omit ARGT or you will

S e c o n d E d i t i o n 3 - 1 0

I MODE

destroy the return pointer for PCL, producing indeterminate results.
For information about argument transfers, refer to the procedure calls
section in Chapter 8 of the System Architecture Reference Guide.

▶ ATQ r, address
Add Entry to Top of Queue
0 1 1 0 0 0 R \ 3 1 0 1 1 1 0 1
AP\32

Adds the entry contained in the specified r to the top of the queue
referenced ty the AP. (AP points to the queue's QCB.) Sets the
condition codes to reflect EQ if the queue was full, or to NE if not
full. Leaves the values of CBIT and LINK unchanged.

3 - 1 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ BCBQ address
Branch on Condition Code EQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0
AEERESSS

If the condition codes reflect equal to 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

▶ BOGE address
Branch on Condition Code GE
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1
AEERESSS

If the condition codes reflect greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

▶ BOGT address
Branch on Condition Code GT
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1
AEERESSS

If the condition codes reflect greater than 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

▶ BCX-E address
Branch on Condition Code LE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
ADDRESSS

If the condition codes reflect less than or equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Leaves the values of CBIT, KINK, and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 1 2

I MODE

▶ BCLT address
Branch on Condition Code LT
1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0
ADDRESSS

If the condition codes reflect less than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ BCNE address
Branch on Condition Code NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
ADERESSS

If the condition codes reflect not equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ BCR address
Branch on CBIT Reset to 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1
AEERESSS

If CBIT has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ BCS addressBranch on CBIT Set to 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0
AEERESSS

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

3 - 1 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ BFEQ f .address
Branch on Floating Accumulator Equal to 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 1 0
ADERESSS

If the specified floating accumulator contents are equal to 0, BFEQ
loads the specified address (in the current segment) into the program
counter; if they are not equal to 0, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) Leaves the KENK and CBIT unchanged. BFEQ works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to 0 and less than 0. (See the
S_ystem Architecture Reference Guide, Chapter 6.)

^ BFGE f .address
Branch on Floating Accumulator Greater Than or Equal to 0
0 0 1 0 0 0 0 F 0 1 0 1 0 1 0 1
ADERESSS

If the specified floating accumulator contents axe greater than or
equal to 0, BPGE loads the specified address (in the current segment)
into the program counter; if they are less than 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BPGE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to 0 and less than 0.
(See the System Architecture Reference Guide, Chapter 6.)

^ BPGT f,address
Branch on Floating Accumulator Greater Than 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 0 1
ADDRESSS

If the specified floating accumulator contents axe greater than 0, BPGT
loads the specified address (in the current segment) into the program
counter; if they are less than or equal to 0, execution continues with
the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BPGT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to 0 and less than 0.
(See the System Architecture Reference Guide, Chapter 6.)

S e c o n d E d i t i o n 3 - 1 4

I MOEE

^ BFLE f,address
Branch on Floating Accumulator Less Than or Equal to 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 0 0
AEERESSS

If the specified floating accumulator contents are less than or equal
to 0, BFLE loads the specified address (in the current segment) into
the program counter; if they are greater than 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BFLE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to 0 and less than 0.
(See Chapter 6 in the System Architecture Reference Guide.)

^ BFLT f, address
Branch on Floating Accumulator Less Than 0
0 0 1 0 0 0 0 F 0 1 0 1 0 1 0 0
AEERESSS

If the specified floating accumulator contents are less than 0, BFLT
loads the specified address (in the current segment) into the program
counter; if they axe greater than or equal to 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BFLT works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to 0 and less than 0.
(See the System Architecture Reference Guide, Chapter 6.)

^ BFNE f, address
Branch on Floating Accumulator Not Equal to 0
0 0 1 0 0 0 0 F 0 1 0 1 0 0 1 1
AEERESSS

If the specified floating accumulator contents axe not equal to 0, BFNE
loads the specified address (in the current segment) into the program
counter; if they axe equal to 0, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) Leaves the LINK and CBIT unchanged. BFNE works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to 0 and less than 0. (See the
System Architecture Reference Guide, Chapter 6.)

3 - 1 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ BHD1 r,address
Branch on Half Register Decremented by 1
0 0 1 0 0 0 R \ 3 1 1 0 0 1 0 0
ADERESSS

Decrements the specified r contents by 1 and stores the result in the
specified r. If the decremented value is not equal to 0, BHD1 loads
the specified address (in the current segment) into the program
counter. If that value is equal to 0, execution continues with the
next instruction. Leaves the CBIT, KENK, and condition codes
unchanged.

▶ BHD2 r,address
Branch on Half Register Decremented By 2
0 0 1 0 0 0 R \ 3 1 1 0 0 1 0 1
ADERESSS

Decrements the specified r contents by 2 and stores the result in the
specified r. If the decremented value is not equal to 0, BHD2 loads
the specified address (in the current segment) into the program
counter. If that value is equal to 0, execution continues with the
next instruction. Leaves the CBIT, LINK, and condition codes
unchanged.

▶ EHD4 r,address
Branch on Half Register Decremented By 4
0 0 1 0 0 0 R \ 3 1 1 0 0 1 1 0
AEERESSS

Decrements the specified r contents by 4 and stores the result in the
specified r. If the decremented value is not equal to 0, BHD4 Loads
the specified address (in the current segment) into the program
counter. If that value is equal to 0, execution continues with the
next instruction. Leaves the CBIT, LINK, and condition codes
unchanged.

▶ BHEQ r,address
Branch on Half Register Equal To 0
0 0 1 0 0 0 R \ 3 1 0 0 1 0 1 0
AEERESSS

If the specified r contents are equal to 0, BHEQ loads the specified
address (in the current segment) into the program counter; if they are
not equal to 0, execution continues with the next instruction. Sets
the condition codes to the comparison result. (See Appendix A.)
Leaves the CBIT and KENK unchanged.

S e c o n d E d i t i o n 3 - 1 6

I MODE

▶ BBGE r,address
Branch on Half Register Greater Than or Equal To 0
O O I O O O R \ 3 1 0 0 11 0 1
AEERESSS

If the specified r contents axe greater than or equal to 0, BHGE loads
the specified address (in the current segment) into the program
counter; if they are less than 0, execution continues with the next
instruction. Sets the condition codes to the result comparison. (See
Appendix A.) Leaves the CBIT and LINK unchanged.

^ BHGT r, address
Branch on Half Register Greater Than 0
0 0 1 0 0 0 R \ 3 1 0 0 1 0 0 1
AEERESSS

If the contents of the specified r axe greater than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are less than
or equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and KENK unchanged.

▶ BEE1 r,address
Branch on Half Register Incremented by 1
0 0 1 0 0 0 R \ 3 1 1 0 0 0 0 0
ADERESSS

Increments the contents of the specified r ty 1 and stores the result
in the specified r. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, KENK, and the condition codes unchanged.

▶ BHI2 r,address
Branch on Half Register Incremented by 2
0 0 1 0 0 0 R \ 3 1 1 0 0 0 0 1
AEERESSS

Increments the contents of the specified r ty 2 and stores the result
in the specified r. If the incremented value is not equal to 0, the
instruction loads the the specified address into the program counter.
This address must be within the current segment. If the incremented
value is equal to 0, execution continues with the next instruction.
Leaves the values of CBIT, KINK, and the condition codes unchanged.

3 - 1 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ BEE4 r, address
Branch on Half Register Incremented by 4
O O I O O O R \ 3 1 1 0 0 0 1 0
ADERESSS

Increments the contents of the specified r by 4 and stores the result
in the specified r. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ EHLE r,address
Branch on Half Register Less Than or Equal to 0
0 0 1 0 0 0 R \ 3 1 0 0 1 0 0 0
ADERESSS

If the contents of the specified r are less than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
greater than 0, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

▶ BHLT r,address
Branch on Half Register Less Than 0
0 0 1 0 0 0 R \ 3 1 0 0 1 1 0 0
ADERESSS

If the contents of the specified r are less than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are greater
than or equal to 0, execution continues with the next instruction.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the values of CBIT and LINK unchanged.

W BHNE r,address
Branch on Half Register Not Equal To 0
0 0 1 0 0 0 R \ 3 1 0 0 1 0 1 1
ADERESSS

If the contents of the specified r axe not equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and KENK unchanged.

S e c o n d E d i t i o n 3 - 1 8

I MODE

▶ EER address
Branch on LINK Reset to 0
1 1 0 O O 0 1 1 1 1 0 0 0 1 1 1
AEERESSS

If KENK has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ ELS address
Branch on LINK Set to 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0
AEERESSS

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

▶ BMEQ address
Branch on Magnitude Condition EQ
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0
AEERESSS

If the condition codes indicate magnitude equal to 0, the instruction
loads the specified address into the program counter, like BCEQ. BMEQ
is intended for magnitude comparisons after a compaxe or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Leaves the values of CBIT, KENK, and the
condition codes unchanged.

^ EMGE address
Branch on Magnitude Condition GE
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0
AEERESSS

If KENK has the value 1, the instruction loads the specified address
into the program counter, like BLS. EMGE is used to determine if the
magnitude of the register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
must be within the current segment. If KENK has the value 0, execution
continues with the next instruction. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

3 - 1 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ BM3T address
Branch on Magnitude Condition GT
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0
AEERESSS

If KENK is 1 and the condition codes reflect not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ BMLE address
Branch on Magnitude Condition LE
1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1
ADERESSS

If KENK is 0 or the condition codes reflect equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other condition exists,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

▶ BMLT address
Branch on Magnitude Condition LT
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1
AEERESSS

If LINK has the value 0, the instruction loads the specified address
into the program counter, like ELR. BMLT is used to determine if the
magnitude of the register quantity is less than the memory quantity
after a compaxe or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ BMNE address
Branch on Magnitude Condition NE
1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 (V m o d e f o r m)
AEERESSS

If the condition codes indicate magnitude not equal to 0, the
instruction loads the specified address into the program counter, like
BCNE. BMNE is intended for magnitude comparisons after a compaxe or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. leaves the values of CBIT, KENK,
and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 2 0

I MODE

▶ BRER R,bit #,address
Branch on Register Bit Reset
OOIOOO R\3 01 BIT\5
AEERESSS

Bits 12 to 16 of the instruction contain a value between '00 and '37.
This value specifies the bit position in the register to be tested. A
value of '00 corresponds to bit 1; '01, bit 2; and so on.

If the specified bit position contains 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains 1,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

▶ BRBS R,bit #,address
Branch on Register Bit Set
001000 R\3 00 BIT\5
AEERESSS

Bits 12 to 16 of the instruction contain a value between '00 and '37.
This value specifies the bit position in the register to be tested. A
value of '00 corresponds to bit 1; '01, bit 2; and so on.

If the specified bit position contains 1, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains 0,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ BRD1 R,address
Branch on Register Decremented ty 1
0 0 1 0 0 0 R \ 3 1 0 1 1 1 0 0
AEERESSS

Decrements the contents of the specified R ty 1 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

3 - 2 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ BRD2 R,address
Branch on Register Decremented ty 2
0 0 1 0 0 0 R \ 3 1 0 1 1 1 0 1
AEERESSS

Decrements the contents of the specified R ty 2 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, KENK, and the condition codes unchanged.

▶ BRD4 R,address
Branch on Register Decremented ty 4
0 0 1 0 0 0 R \ 3 1 0 1 1 1 1 0
AEERESSS

Decrements the contents of the specified R ty 4 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, KENK, and the condition codes unchanged.

^ EREQ R,address
Branch on Register Equal to 0
0 0 1 0 0 0 R \ 3 1 0 0 0 0 1 0
AEERESSS

If the contents of the specified R are equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents axe not equal to
0, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

^ ERGE R,address
Branch on Register Greater Than or Equal to 0
0 0 1 0 0 0 R \ 3 1 0 0 0 1 0 1
ADDRESSS

If the contents of the specified R axe greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are less
than 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and KINK unchanged.

S e c o n d E d i t i o n 3 - 2 2

I MODE

^ BE*GT R,address
Branch on Register Greater Than 0
O O I O O O R \ 3 l O O O O O l
ADERESSS

If the contents of the specified R are greater than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are less than or
equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

▶ BRIl R,address
Branch on Register Incremented ty 1
0 0 1 0 0 0 R \ 3 1 0 1 1 0 0 0
AEERESSS

Increments the contents of the specified R ty 1 and stores the result
in the specified R. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRI2 R,address
Branch on Register Incremented ty 2
0 0 1 0 0 0 R \ 3 1 0 1 1 0 0 1
ADERESSS

Increments the contents of the specified R ty 2 and stores the result
in the specified R. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

^ BRI4 R,address
Branch on Register Incremented ty 4
0 0 1 0 0 0 R \ 3 1 0 1 1 0 1 0
ADERESSS

Increments the contents of the specified R ty 4 and stores the result
in the specified R. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

3 - 2 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ ERIE R,address
Branch on Register Less Than or Equal to 0
0 0 1 0 0 0 R \ 3 1 0 0 0 0 0 0
ADERESSS

If the contents of the specified R axe less than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents axe
greater than 0, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and KENK unchanged.

^ BRLT R,address
Branch on Register Less Than 0
0 0 1 0 0 0 R \ 3 1 0 0 0 1 0 0
ADERESSS

If the contents of the specified R axe less than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are greater than
or equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and KENK unchanged.

^ ERNE R,address
Branch on Register Not Equal to 0
0 0 1 0 0 0 R \ 3 1 0 0 0 0 1 1
AEERESSS

If the contents of the specified R are not equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents axe equal to 0,
execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and KENK unchanged.

S e c o n d E d i t i o n 3 - 2 4

I MODE

^ C R,address
Compare Fullword
110 0 0 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the 32-bit value
contained in the specified R to the 32-bit value contained in the
location specified by EA. The comparison is done ty subtracting the
contents of the the memory location from the contents of the register.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the value of CBIT unchanged. KENK contains the
caxry-out bit.

Note

This instruct ion also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ CALF address
Call Fault Handler
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1
AP\32

The address pointer in this instruction points to the ECB of a fault
routine. CALF uses this pointer to transfer control to the fault
routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, KENK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Referenoe
Guide for more information.

^ OCP destination-R,source-R
Compaxe C Pointer
10 0 10 1 ER\3 TM\2 SR\3 BR\2

Compares the C language pointer in the specified source R to the C
language pointer in the specified destination R. Ignores the pointer
fault and ring bits during the comparison. Leaves the values of CBIT
and LINK unchanged. Sets the condition codes to the outcome of the
comparison as follows.

C o n d i t i o n O C

Contents of destination-R > contents of source-R. GT

Contents of destination-R = contents of source-R. EQ

Contents of destination-R < contents of source-R. LT

3 - 2 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

While of the memory referencing form, the CCP instruction is
only defined for register-to-register address formation. (See
Appendix B of the Instruction Sets Guide.) The immediate form
o f t h i s i n s t r u c t i o n i s u n d e fi n e d , b u t t h e p r e f e r r e d
implementation is a UII for the immediate form.

If OCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ CGT r
Computed GOTO
0 1 1 0 0 0 R \ 3 0 0 1 0 1 1 0
INTEGER NS
BRANCH ADERESS IS

BRANCH AEDRESS N-1S

If the contents of the specified r are greater than or equal to 1 and
less than the specified integer N that follows the opcode, the
instruction adds the contents of r to the contents of the program
counter to form an address. (The program counter points to the integer
N following the opcode.) Loads the contents of the location specified
ty this address into the program counter. If the contents of r are not
within this range, the instruction adds integer N to the contents of
the program counter and stores the result in the program counter. Each
of the branch addresses following the instruction specifies a location
within the current procedure segment. The values of CBIT, KENK, and
the condition codes axe indeterminate.

^ CH r, address
Compare Halfword
1110 0 1 DR\3 TM\2 SR\2 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Compares the value contained in
the specified r to the 16-bit value contained in the location specified
by EA. Leaves the value of CBIT unchanged. KENK contains the
caxry-out bi t . The condit ion codes reflect the result of the
comparison. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

S e c o n d E d i t i o n 3 - 2 6

I MODE

▶ CHS R
Change Sign
Ol lOOO R\3 O lOOOOO

Complements bit 1 of the specified R. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

▶ CMH r
Ctomplement r
0 1 1 0 0 0 R \ 3 0 1 0 0 1 0 1

Forms the one's complement of the contents of the specified r by
inverting the value of each bit and stores the result in r. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

▶ CMR R
Complement R
0 1 1 0 0 0 R \ 3 0 1 0 0 1 0 0

Forms the one's complement of the contents of the specified R ty
inverting the value of each bit and stores the result in R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ CR RCleax R to 0
0 1 1 0 0 0 R \ 3 0 1 0 1 1 1 0

Clears the specified R to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

▶ CRBL R
Cleax R High Byte 1 Left
0 1 1 0 0 0 R \ 3 0 1 1 0 0 1 0

Loads zeros into bits 1 to 8 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

^ CRER R
Clear R High Byte 2 Right
0 1 1 0 0 0 R \ 3 0 1 1 0 0 1 1

Loads zeros into bits 9 to 16 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

3 - 2 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

CRHL R
Cleax R Left Halfword
O l l O O O R \ 3 O l O l l O O

Clears bits 1 to 16 of the specified R to 0. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

^^ CRHR R
Clear R Right Halfword
0 11 0 0 0 R \ 3 0 1 0 11 0 1

Clears bits 17 to 32 of the specified R to 0. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

▶ CSR R
Copy Sign
0 11 0 0 0 R \ 3 0 1 0 0 0 0 1

Copies the value of bit 1 of the specified R into CBIT, and then loads
0 into bit 1 of R. The value of KENK is indeterminate. Leaves the
condition codes unchanged.

S e c o n d E d i t i o n 3 - 2 8

I MODE

^ D R,address
Divide Fullword
110 0 10 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 64-bit value
contained in the specified R and R+l ty the 32-bit value contained in
the location specified ty EA. Stores the quotient in the specified R
and the remainder in R+l. Overflow may occur if the quotient is less
than -(2**31) or greater than (2**31)-1. Overflow and divide ty 0
cause an integer exception.

If no integer exception occurs, CBIT is reset to 0. The instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1; if bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the Stystem Architecture Reference Guide.

Note

R must specify an even register. This instruction also has a
register-to-register and an immediate form. See Appendix B for
more information.

^ DBLE f
Convert Single to Double Floating Point
0 1 1 0 0 0 0 F 0 1 0 0 0 1 1 0

Converts the single precision number in the specified floating-point
accumulator to a double precision one ty zeroing bits 32 to 48 of the
floating-point accumulator. Stores the result in the floating-point
accumulator. Leaves the values of CBIT, LINK, and the condition codes
unchanged. Overflow or underflow cannot occur.

▶ DCP R
Decrement C Pointer
0 1 1 0 0 0 R \ 3 1 1 1 0 0 0 0

Decrements the C language pointer in the specified R ty 1 tyte.
Decrementing a 0 offset reduces the segment number Ijy 1. Decrementing
segment number 0, offset 0, byte 0 generates a pointer to the maximum
segment number, the maximum offset, and byte 0. Leaves the CBIT, LINK,
and the condition codes unchanged. For C pointer details, see Chapter
1 and Appendix B of this guide.

3 - 2 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

If DCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ DFA f,address
Double Floating Add
0011101F1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Adds the contents of the
specified DAC to the contents of the location specified hy EA. Stores
the result in the DAC. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0. The values
of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

^ DFC f .address
Double Floating Compaxe
0001101F1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Compares the contents of the
specified DAC to the contents of the location specified by EA. Leaves
the values of CBIT and LINK unchanged. Sets the condition codes to the
outcome of the comparison.

C o n d i t i o n O C

Contents of DAC > contents of location specified by EA. GT

Contents of DAC = contents of location specified by EA. EQ

Contents of DAC < contents of location specified by EA. LT

Qn some processors, DFC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:

S e c o n d E d i t i o n 3 - 3 0

I MODE

first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results axe returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more infoimation.

^ DFCM f
Double Floating Complement
0 1 1 0 0 0 0 F 0 1 1 0 0 1 0 0

Forms the two's complement of the double precision, floating-point
number contained in the specified DAC and normalizes it if necessary.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of KENK and the condition codes axe .indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

▶ DFD f .address
Double Floating Divide
0111100F1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Divides the contents of the
specified DAC by the contents of the location specified by EA.
Normalizes the quotient if necessary. Stores the result in the DAC.
An overflow or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

3 - 3 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ DFL f .address
Double Floating Load
OOOllOOFl TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the specified DAC without normalizing the
result. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

The DFL instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ DFM f,address
Double Floating Multiply
0101101F1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Multiplies the 64-bit contents of
the location specified by EA by the contents of the specified DAC.
Normalizes the result if necessary. Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ DFS f .address
Double Floating Subtract
0101100F1 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the location specified ty EA from the contents of the specified DAC.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of KENK and the condition codes are indeterminate.

S e c o n d E d i t i o n 3 - 3 2

I MODE

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The DFS instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ DFST f .address
Double Floating Point Store
0011100F1 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Stores the contents of the
specified DAC into the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

▶ EH R,address
Divide Halfword
1110 10 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Divides the 32-bit dividend
contained in the specified R by the 16-bit value contained in the
location specified by EA. Stores the quotient in bits 1 to 16 of R and
the remainder in bits 17 to 32 of R. The sign of the remainder equals
the sign of the dividend. If the quotient is less than -(2**15) or
greater than (2**15)-1, an overflow occurs and causes an integer
exception. If no integer exception occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

3 - 3 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

The DH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ DH1 r
Decrement r by 1
0 11 0 0 0 R \ 3 1 0 11 0 0 0

Decrements the contents of r by 1 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ DH2 r
Decrement r by 2
0 11 0 0 0 R \ 3 1 0 11 0 0 1

Decrements the contents of r by 2 and stores the result in r. If an
overflow occurs, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. LINK reflects the value of the carry. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
DH2 instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

^ EM address
Decrement Memory Fullword
110110000 TM\2 SR\3 BR\2
DISPLACEMENT\16

Subtracts 1 from the 32-bit integer contained in the specified location
and stores the result back in the specified location. Leaves the
values of KENK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

S e c o n d E d i t i o n 3 - 3 4

I MODE

▶ EMH address
Decrement Memory Halfword
lllllOOOO TM\2 SR\3 BR\2
DISPLACEMENT\16

Subtracts 1 from the 16-bit integer contained in the specified location
and stores the result back in the specified location. Leaves the
values of KENK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

▶ ER1 R
Decrement Register by 1
0 1 1 0 0 0 R \ 3 1 0 1 0 1 0 0

Decrements the contents of R by 1 and stores the result in R. An
overflow causes an integer exception. If no integer exception occurs,
CBIT is reset to 0. LINK contains the value of the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ ER2 R
Decrement Register by 2
0 11 0 0 0 R \ 3 1 0 1 0 1 0 1

Decrements the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. KENK contains the value of the
borrow bit. The condition codes reflect the result of the operation.
(See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
ER2 instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

^ ERN
Double Round From Quad
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, the instruction ends. If bits 50 to 96 of
QAC axe not zero, or bit 48 of QAC contains 1, the instruction adds the
value of bit 49 to that of bit 48 (unbiased round) and clears bits 49
to 96 of QAC to 0. If any other condition exists, no unbiased rounding

3 - 3 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

occurs, but bits 49 to 96 of QAC are still cleared to 0. After any
rounding and clearing occurs, the instruction normalizes the result and
loads it into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes are ijsdeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If ERN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

)▶ ERNM
Double Round From Quad Towards Negative Infinity
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, or if bits 49 to 96 of QAC contain zeros,
the instruction ends. In any other case, the instruction clears bits
49 to 96 to 0, normalizes the result, and places it in bits 1 to 64 of
QAC.

The value of CBIT is unchanged. The values of KENK and the condition
codes are indeteiminate.

Note

If ERNM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ ERNP
Double Round From Quad Towards Positive Infinity
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

Converts the 112-bit value in QAC to a double precision floating point
number. If QAC contains 0, or if bits 49 to 96 of QAC contain zeros,
the instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49 to 96 to 0, normalizes
the result, and places it in bits 1 to 64 of QAC.

S e c o n d E d i t i o n 3 - 3 6

I MODE

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes axe __ndete_^ranate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the system Architecture Reference Guide for more
information.

Note

If ERNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ DRNZ
Double Round From Quad Towards Zero
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, the instruction ends. If bits 49 to 96 of
QAC contain zeros and hit 1 contains 1, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49 to 96 to 0, normalizes
the result, and places it in bits 1 to 64 of QAC. If any other
condition exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If ERNZ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3 - 3 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ E16S
Enter 16S Mode
O O O O O O O O O O O O l O O l

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E32I
Enter 321 Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 321 address calculations may be used to
form effective addresses. Leaves the values of CBIT, KENK, and the
condition codes unchanged.

^ E32R
Enter 32R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

Sets bits 4 to 6 of the keys to Oil. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ E32S
Enter 32S Mode
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions
may now be interpreted, and 32S address calculations may be used to
form effective addresses. Leaves the values of CBIT, KENK, and the
condition codes unchanged.

^ E64R
Enter 64R Mode
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

S e c o n d E d i t i o n 3 - 3 8

I MODE

^ E64V
Enter 64V Mode
O O O O O O O O O O O O I O O O

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

^ EAFA far, address
Effective Address to FAR
0 0 0 0 0 0 1 0 1 1 0 0 F O O O
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR, for direct
access. Indirection uses the bit field in the indirect pointer (if
any). Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Figure 3-2 shows the format of the EA loaded into the specified FAR.

1 1 6 1 7 3 2 3 3 3 6

I RING, SEG I WORD # I BIT # I

EA Format for EAFA
Figure 3-2

^ EALB address
Effective Address to LB
100110010 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA, and loads it into LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

3 - 3 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ EAR R,address
Effective Address to Register
110 0 11 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Loads the 32-bit EA into the
specified R. Leaves the values of CBIT, KENK, and the condition codes
unchanged.

^ EAXB address
Effective Address to XB
101110010 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA, and loads it into XB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ E I O « ; a d d r e s s L S f w t e a * * * *
Execute I/O
0 1110 0 ER\3 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA. Executes bits 17 to 32 of EA as
if they were a PIO instruction. If execution is successful, the
instruction sets the condition codes as follows:

O C M e a n i n g

EQ Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, CR SKS; any OCP

Leaves the values of KENK and CBIT unchanged. For more information
about I/O operations, see Chapter 11 of the System Architecture
Reference Guide.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 3 ^ 4 0

I MODE

^ ENB
Enable Interrupts
O O O O O O O l O O O O O O O l

Enables interrupts ty setting bit 1 of the modals to 1. Inhibits
interrupts for one instruction. Leaves the values of CBIT, KENK, and
the condition codes unchanged.

Note

This is a restricted instruction.

▶ ENBL
Enable Interrupts (Local)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

This 850 instruction performs the same actions as ENB, except that it
is performed specifically for the local prooessor. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

▶ ENBM
Enable Interrupts (Mutual)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

For the 850, a prooessor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, KENK, and the condition
codes unchanged.

Note

This is a restricted instruction.

3 - 4 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ ENBP
Enable Interrupts (Prooess)
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

For the 850, a processor checks the availability of the prooess
exchange lock. If available, the prooess releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

S e c o n d E d i t i o n 3 - 4 2

I MODE

^ FA f,address
Floating Add
OOl l lO lFO TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified FAC to the 32-bit contents of the location specified ty EA.
(See Chapter 6 of the System Architecture Reference Guide.) Stores the
result in the FAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes axe indeterminate. If a floating-point
exception occurs and bit 7 of the keys contains a 1, the instruction
sets CBIT to 1. If bit 7 contains a 0, the instruction sets CBIT to 1
and causes a floating-point exception fault. See Chapter 10 of the
System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ FC f.address
Floating Compare
0001101F0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Compares the contents of the
specified FAC to the contents of the location specified ty EA. Leaves
the values of KENK and CBIT unchanged. Sets the condition codes to
reflect the outcome of the comparison:

C o n d i t i o n O C

Contents of FAC > contents of location specified ty EA. GT

Contents of FAC = contents of location specified ty EA. EQ

Contents of FAC < contents of location specified ty EA. LT

Qn some prooessors, FC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers axe compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

The FC instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

3 - 4 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ FCDQ
Floating Point Convert Double to Quad
1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1

Clears FAC1 to 0. Leaves the values of CBIT, KENK, and the condition
codes unchanged.

Note

If FCDQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ FCM f
Floating Point Complement
0 1 1 0 0 0 0 F 0 1 0 0 0 0 0 0

Forms the two's complement of the contents of the FAC and normalizes
the result if necessary. (See Chapter 6 of the System Architecture
Reference Guide.) Stores the result in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

▶ FD f .address
Floating Divide
0111100F0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Divides the contents of the
specified FAC by the contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Stores the
result in the FAC and normalizes if necessary. A divide by 0 or an
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of KENK and the
condition codes are __ndeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

S e c o n d E d i t i o n 3 - 4 4

I MODE

Note

The FD instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ FL f,address
Floating Load
0001100F0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Converts the single precision
operand to double precision and loads the result into the specified FAC
without normalizing it. Leaves the contents of CBIT, KENK, and the
condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ FLT f,R
Convert Integer to Floating Point
0 1 1 0 0 0 R \ 3 1 0 0 F 1 0 1

Converts the integer contained in R to a floating-point number and
stores the result in the specified FAC. The values of CBIT, LINK, and
the condition codes are __i_determinate.

^ FLTH f,r
Convert Halfword Integer to Floating Point
0 1 1 0 0 0 R X 3 1 0 0 F 0 1 0

Converts the halfword integer contained in r to a floating-point number
and stores the result in the specified FAC. The values of CBIT, KENK,
and the condition codes are indeterminate.

▶ FM f,address
Floating Multiply
0101101F0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address. EA. Multiplies the 32-bit contents of
the location specified ty EA ty the contents of the specified FAC.
(See Chapter 6 of the System Architecture Reference Guide.) Normalizes
the result, if necessary, and stores it in the FAC. An exponent

3 - 4 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of KENK and the
condition codes are -indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The FM instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ FRN f
Floating Round
0 1 1 0 0 0 0 F 0 1 0 0 0 1 1 1

This instruction operates on and stores all results in the floating
accumulator.

For the 2350 to 9955 II, the following actions occur. If bits 1 to 48
contain 0, then bits 49 to 64 are cleared to 0. If bits 24 and 25 both
contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to 0,
and the result is normalized. If bit 25 contains 1 and bits 26 to 48
are not equal to 0, then 1 is added to bit 24, bits 25 to 48 are
cleared, and the result is normalized.

For the earlier systems listed in "About This Book", the following
actions occur. If bits 1 to 48 contain 0, then bits 49 to 64 are
cleared to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are
cleared to 0, and the result is normalized.

For all systems, if no floating-point exception occurs, resets CBIT to
0. The values of LINK and the condition codes are incleterininate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

S e c o n d E d i t i o n 3 - 4 6

I MODE

▶ FRNM f
Fixating Point Round Towards Negative Infinity
0 1 1 0 0 0 0 F 0 1 1 0 0 1 1 0

Converts the 64-hit value in DAC to a single precision floating-point
number. If DAC contains 0, or if bits 25 to 48 of DAC contain zeros,
the instruction ends. In any other case, the instruction clears bits
25 to 48 to 0, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ FRNP f
Floating Point Round Towards Positive Infinity
0 1 1 0 0 0 0 F 0 1 1 0 0 1 0 1

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, or if bits 25 to 48 of DAC contain zeros,
the instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to 0, normal izes
the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
0. The values of KENK and the condition codes axe indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

▶ FRNZ f
Floating Point Round Towards Zero
0 1 1 0 0 0 0 F 0 1 1 0 0 1 1 1

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to 0, normalizes
the result, and places it in DAC. If any other condition exists, no
rounding occurs.
If no floating-point exception occurs, the instruction resets CBIT to
0. The values of LINK and the condition codes are -Indeterminate.

3 - 4 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a
1, FRNZ sets CBIT to 1. If bit 7 contains a 0, the instruction sets
CBIT to 1 and causes a floating-point exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ FS f,address
Floating Subtract
0101100F0 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 32-bit contents of
the location specified by EA from the contents of the specified FAC.
(See Chapter 6 of the gystem Architecture Reference Guide.) Normalizes
the result, if necessary, and stores it in the FAC. An overflow causes
a floating-point exception. If no floating-point exception occurs,
CBIT is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ FST f,address
Floating Store
0011100F0 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Stores the contents of the
specified FAC into the 32-bit location specified by EA. (See Chapter 6
of the Sjystem Architecture Reference Guide.) The result is normalized
only if rounding is enabled. If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store
exception) occurs. If no exception occurs, the instruction resets CBIT
to 0. At the end of the instruction, the values of KENK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

S e c o n d E d i t i o n 3 - 4 8

I MOEE

^ HLT
Halt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Halts cjontputer operation. The program counter points to the
instruction that would have been executed if execution had not been
stopped. The supervisor terminal indicates a halt. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
specified by the RSAVPTR. The contents of RSAVPTR can be accessed ty
an LDAR/STAR instruction with address '40037. The registers axe saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 3-3.

Table 3-3
Order of Saved Registers After HLT

6350, 2350 to 2755,
9750 to 9955 II 9650 and 9655 Earlier Systems* i

User Reg Set 3 User Reg Set 1 User Reg Set 2 I
User Reg Set 4 User Reg Set 2 User Reg Set 1 1
User Reg Set 1 User Reg Set 3 EMx Reg F i le I
User Reg Set 2 User Reg Set 4 Microcode Reg File I
Microcode Reg File, User Reg Set 5

Set 2 User Reg Set 6
Indirect Reg Set User Reg Set 7
Microcode Reg File, User Reg Set 8

Set 1 EMx Reg File
EMx Reg File Microcode Reg File,

Set 1
Microcode Reg File,

Set 2

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

3-49 Second Edition

INSTRUCTION SETS GUIDE

▶ I R,address
Interchange Register and Memory Fullword
10 0 0 0 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Interchanges the 32-bit value
contained in the specified R with the 32-bit value contained in the
location specified ty EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The I instruction is non-atomic, and, especially for
dual-stream prooessors, cannot be used for spin-locks. In
these cases, use the STCD instruction instead.

This instruction also has a register-to-register form. See
Appendix B for more information.

▶ ICBL r
Interchange Bytes and Clear Left
0 11 0 0 0 R \ 3 0 11 0 1 0 1

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r, then
loads 0 into bits 1 to 8 of r. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

^ ICBR r
Interchange Bytes and Clear Right
0 1 1 0 0 0 R \ 3 0 1 1 0 1 1 0

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r, then
loads zeros into bits 9 to 16 of r. Leaves the values of CBIT, KENK,
and the condition codes unchanged.

^ ICHL R
Interchange Halfwords and Clear Left
0 1 1 0 0 0 R \ 3 0 1 1 0 0 0 0

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R, then loads zeros into bits 1 to 16 of R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 5 0

I MODE

▶ ICHR R
Interchange Halfwords and Cleax Right
O l l O O O R \ 3 O l l O O O l

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R, then loads zeros into bits 17 to 32 of R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ ICP R
Increment C Pointer
0 1 1 0 0 0 R \ 3 1 1 1 0 1 1 1

Increments the C language pointer in the specified R ty 1 tyte.
Incrementing the largest offset adds 1 to the segment number.
Incrementing the largest segment number with the largest offset
generates a pointer to segment 0, offset 0, byte 1. Leaves the CBIT,
LINK, and the condition codes unchanged. (For C pointer details, see I
Mode in Chapter 1 and 32 I Mode in Appendix B of this guide.)

Note

If ICP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ IH r,address
Interchange r and Memory Halfword
10 10 0 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Interchanges the value contained
in the specified r with the 16-bit value contained in the location
specified by EA. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

The IH instruction is non-atomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STCH instruction instead.

This instruction also has a register-to-register form. See
Appendix B for more information.

3 - 5 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ 3_H1 r
Increment r by 1
0 1 1 0 0 0 R \ 3 1 0 1 0 1 1 0

Increments the contents of the specified r by 1 and stores the result
in r. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. LINK reflects the state of the
carry. The condition codes reflect the result of the operation. (See
Appendix A.)
If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ IH2 r
Increment r by 2
0 1 1 0 0 0 R \ 3 1 0 1 0 1 1 1

Increments the contents of the specified r by 2 and stores the result
in r. An overflow causes an integer exception to occur. If no integer
exception occurs, CBIT is reset to 0. LINK reflects the state of the
carry. The condition codes reflect the result of the operation. (See
Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the Sjystem Architecture Reference Guide for more information.

▶ IM address
Increment Memory Fullword
100110000 TM\2 SR\3 BR\2
DISPLACEMENTS

Adds 1 to the 32-bit integer contained in the specified location and
stores the result back in the specified location. Leaves the values of
KENK and CBIT unchanged. The condition codes reflect the result of the
operation. (See Appendix A.)

S e c o n d E d i t i o n 3 - 5 2

I MODE

^ IMH address
Increment Memory Halfword
101110000 TM\2 SR\3 BR\2
DISPLACEMENT\16

Adds 1 to the 16-bit integer contained in the specified location and
stores the result back in the specified location. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
operation. (See Appendix A.)

^ INBC address
Interrupt Notify Beginning, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted prooess by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
in te r rup ts .

The values of CBIT, LINK, and the condition codes are indeterminate. A
prooess exchange will occur if the notified process is of a higher
priority than the interrupted prooess. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

INBC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
Sjystem Architecture Reference Guide for more information.

^ INBN address
Interrupt Notify Beginning
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted prooess by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
prooess at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to cleax the currently
active interrupt.

3 - 5 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

The values of CBIT, LINK, and the condition codes are ijxieterminate. A
process exchange will occur if the notified prooess is of a higher
priority than the interrupted prooess. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

INBN is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

▶ INEC address
Interrupt Notify End, Clear Active Interrupt
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted prooess by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue. Issues a
CAI pulse to clear the currently active interrupt, and enables
i n te r rup t s .

The values of CBIT, LINK and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted prooess. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
System Architecture Reference Guide for more information.

^ INEN address
Interrupt Notify End
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted prooess by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified

S e c o n d E d i t i o n 3 - 5 4

I MODE

process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to cleax the currently active
interrupt.

The values of CBIT, KENK, and the condition codes are irkdeteiminate. A
process exchange will occur if the notified prooess is of a higher
priority than the interrupted prooess. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt prooess. See Chapter 10 of the
System Architecture Reference Guide for more information.

^ INH
Inhibit Interrupts
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Inhibits interrupts by resetting bit 1 of the modals to 0. Inhibits
interrupts until an enable interrupts instruction executes. The
prooessor ignores any interrupt requests that are made over the I/O
bus. This instruction takes effect immediately. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ INHL
Inhibit Interrupts (Local)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

INHL is a restricted instruction.

3 - 5 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ INHM
Inhibit Interrupts (Mutual)
O O O O O O I O O O O O O O O O

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other prooessor and then sets the lock and inhibits interrupts.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

▶ INHP
Inhibit Interrupts (Process)
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

For the 850, a prooessor checks the availability of the process
exchange lock. If available, the prooessor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor, and then sets the lock and inhibits interrupts. It
also inhibits interrupts in the local prooessor. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

▶ INK r
Input Keys
0 1 1 0 0 0 R \ 3 0 1 1 1 0 0 0

Loads the contents of the I mode keys into the specified r. Leaves the
values of CBIT, KENK, and the condition codes unchanged. Reads the
low-order 8 bits of the S register along with the high-order 8 bits of
the keys register.

▶ INT f ,R
Convert Floating Point to Integer
011000 R\3 1 0 0 F 0 1 1

Converts the double precision floating-point number contained in the
specified floating accumulator to a 32-bit integer and stores the
result in R. Ignores the fractional paxt of the floating-point number.
For example, +4.5 is converted to +4 and -4.5 is converted to -4.

S e c o n d E d i t i o n 3 - 5 6

I MODE

Overflow occurs if the value in the floating accumulator is less than
-2**31 or greater than (2**31)-1. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

^ INTH f ,r
Convert Floating Point Number to Halfword Integer
011000 R\3 1 0 0 F 0 0 1

Converts the double precision floating-point number contained in the
specified floating accumulator to an integer and stores the result in
r. Ignores the fractional portion of the floating-point number. For
example, +4.5 is converted to +4 and -4.5 is converted to -4. Overflow
occurs if the value in the floating accumulator is less than -2**15 or
greater than (2**15)-1. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0.

At the end of this instruction, the contents of R bits 17 to 32 axe
indeterminate. The values of KENK and the condition codes axe
i ndeteiminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

▶ IR1 R
Increment Register by 1
0 1 1 0 0 0 R \ 3 1 0 1 0 0 1 0

Increments the contents of the specified R by 1 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. KENK contains the caxry-out bit.
The condition codes reflect the result of the operation. (See Appendix
A.)

If an integer exception occurs and bit 8 in the keys contains 0, the
IR1 instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. (See Chapter 10
of the Sjystem Architecture Reference Guide.)

3 - 5 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ IR2 R
Increment Register by 2
O l l O O O R \ 3 1 0 1 0 0 11

Increments the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. LINK contains the carry-out bit.
The condition code contains the result of the operation. (See Appendix
A.)

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

▶ IRB r
Interchange r Bytes
0 1 1 0 0 0 R \ 3 0 1 1 0 1 0 0

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

▶ IRH R
Interchange Register Halves
0 1 1 0 0 0 R \ 3 0 1 0 1 1 1 1

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ IRTC
Interrupt Return, Clear Active Interrupt
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1

Returns from an interrupt. Restores the state existing before the
interrupt ty loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in miorocode temporary
registers PSWPB and PSWKEYS. Issues a CAI pulse to cleax the currently
active interrupt, and enables interrupts.

Note

IRTC is a restricted instruction.

S e c o n d E d i t i o n 3 - 5 8

I MODE

▶ IRTN
Interrupt Return
O O O O O O O l l O O O O O O l

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAI pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

^ ITLB
Invalidate STLB Entry
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1

Invalidates the STLB entry that corresponds to the virtual address
contained in (3*2. The values of CBIT, LINK, and the condition codes
are indeterminate. You must execute this instruction whenever you
change the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you usually have to invalidate the
entire STLB ty issuing the instruction PTLB. A 0 in the segment number
portion of (3*2 invalidates the IOTLB entry corresponding to the address
specified by (3*2.

Note

This is a restricted instruction.

3 - 5 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ JMP address
Jump
101110001 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA, and loads it into the program
counter. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

^ JSR r,address
Jump to Subroutine
1110 11 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Saves the 16-bit halfword number
position of the return address in the specified r. Loads the program
counter with the current segment location specified by bits 17 to 32 of
the EA. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction is useful for calling routines within the
current segment only.

^ JSXB address
Jump and Save in XB
110110001 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

JSXB can make subroutine calls outside the current segment as
well as within.

S e c o n d E d i t i o n 3 - 6 0

I MODE

▶ L R,address
Load Full Word
OOOOOl ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads EA into the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruct ion also has a register-to-register and an
immediate form. See Appendix B for more information.

^ LOC r,address
Load C Character
10 0 10 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENT16

Calculates a C language pointer and uses it to load a single character
into bits 9 to 16 of the specified r. If bit 4 of the C pointer
contains 0, bits 1 to 8 of the location contain the character to be
loaded; if bit 4 of the pointer contains 1, bits 9 to 16 of the
location contain the character.

Clears bits 1 to 8 of r, but leaves bits 17 to 32 of R unchanged. Sets
the condition code EQ to 1 (indicating equal to 0) when 0 is loaded;
resets EQ to 0 (indicating not equal to zero) for all other chaxacters.
The state of the LT condition code is indeterminate. Testing the
results should be done using either BCEQ or BCNE branches only. Leaves
the values of CBIT and LINK unchanged.

Note

The LOC instruction is valid only for general register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

In paxticulax, do not use the register-to-register or immediate
form with the LOC instruction because it would be interpreted
as a OCP instruction. (LOC and OCP share the same opcode, but
OCP uses the register-to-register form; the immediate form of
OCP is undefined, but the preferred implementation is a UII
(unimplemented instruction.)

Direct addressing, however, will obtain the first tyte (of two)
pointed to ty the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E bit reset.

3 - 6 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

If LOC is used for any earlier system listed in "About This
Book", a UII fault occurs. (See Chapter 10 of the System
Architecture Reference Guide.)

^ LCEQ r
Load Register on Condition Code EQ
0 1 1 0 0 0 R \ 3 1 1 0 1 0 1 1

If the condition codes reflect an equal to 0 condition, the instruction
loads the specified r with a 1. If they reflect a not equal to 0
condition, the instruction loads r with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

^ LCGE r
Load Register on Condition Code GE
0 1 1 0 0 0 R \ 3 1 1 0 1 1 0 0

If the condition codes reflect a greater than or equal to 0 condition,
the instruction loads the specified r with a 1. If they reflect a less
than 0 condition, the instruction loads r with a 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

^ LCGT r
Load Register on Condition Code GT
0 1 1 0 0 0 R \ 3 1 1 0 1 1 0 1

If the condition codes reflect a greater than 0 condition, the
instruction loads the specified r with a 1. If they reflect a less
than or equal to 0 condition, the instruction loads r with a 0. Leaves
the values of CBIT, KENK, and the condition codes unchanged.

▶ LCLE r
Load Register on Condition Code LE
0 1 1 0 0 0 R \ 3 1 1 0 1 0 0 1

If the condition codes reflect a less than or equal to 0 condition, the
instruction loads the specified r with a 1. If they reflect a greater
than 0 condition, the instruction loads r with a 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 6 2

I MODE

^ LCLT r
Load Register on Condition Code LT
O l l O O O R \ 3 1 1 0 1 0 0 0

If the condition codes reflect a less than 0 condition, the instruction
loads the specified r with a 1. If they reflect a greater than or
equal to 0 condition, the instruction loads r with a 0. Leaves the
values of CBIT, KENK, and the condition codes unchanged.

^ LCNE r
Load Register on Condition Code NE
0 1 1 0 0 0 R \ 3 1 1 0 1 0 1 0

If the condition codes reflect a not equal to 0 condition, the
instruction loads the specified r with a 1. If they reflect an equal
to 0 condition, the instruction loads r with a 0. Leaves the values of
CBIT, KENK, and the condition codes unchanged.

^ LDAR R,address
Load Addressed Register
10 0 10 0 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates a 32-bit (1-word) effective address, EA. Loads the
specified R with the contents of the register file location specified
by the offset portion of EA. Bit 2 and bit 12 of the offset portion of
EA <_letermine the actions of this instruction.

B i t 2 B i t 1 2 A c t i o n

1* Ignore bi ts 1 and 3 to 9. The offset port ion of
EA specifies an absolute register number from 0
to '377.

0 * 1 B i t s 1 3 t o 1 6 o f t h e o f f s e t p o r t i o n o f E A
specify one of the registers '20 to '37 in the
current register set.

0 0 B i t s 1 3 t o 1 6 o f t h e o f f s e t p o r t i o n o f E A
specify one of the registers 0 to '17 in the
current register set.

♦This is a restricted instruction.

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes are indeteiminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

3 - 6 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

If the current ring is not 0 and EA is outside the range of 0
to '17, inclusive, any access causes an RXM violation.

^ LDC flr.r
Load Character
0 1 1 0 0 0 R\3 1 1 1 FLR 0 1 0

If the contents of the specified FLR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of r. When the FAR's bit field contains 0,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of r.
Updates the contents of the FAR by 8 (one byte) so that they point to
the next character. Decrements the contents of the specified FLR ty 1.
Sets the condition codes to NE. Leaves the values of CBIT and LINK
unchanged.

If the contents of the specified FER are 0, the instruction sets the
condition codes to EQ.

Note

This instruction uses FARO when FIRO is specified, and FAR1
when FIR1 is specified.

▶ LEQ R
Load Register on Equal to 0
0 11 0 0 0 R \ 3 0 0 0 0 0 11

If the contents of the specified R are equal to 0, the instruction
loads r with a 1. If not equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

▶ LF r
Logic Set False
0 1 1 0 0 0 R \ 3 0 0 0 1 1 1 0

Loads the specified r with 0. Leaves the values of LINK and CBIT
unchanged. The values of the condition codes axe indeteiminate.

S e c o n d E d i t i o n 3 - 6 4

I MODE

^ LFEQ f ,r
Load Register on Floating Accumulator Equal to 0
011000 R\3 0 0 1 F 0 1 1

If the contents of the specified floating accumulator are equal to 0,
the instruction loads the specified r with a 1; if not equal to 0, the
instruction loads r with a 0. Leaves the values of KENK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.)

LFEQ works correctly only on normalized or nearly normalized numbers,
because it checks fraction bits 1 to 32 only for equal to 0 and less
than 0. (See the System Architecture Reference Guide, Chapter 6.)

^ LFGE f ,r
Load Register on Floating Accumulator Greater Than or Equal to 0
011000 R\3 0 0 1 F 1 0 0

If the contents of the specified floating accumulator are greater than
or equal to 0, the instruction loads the specified r with a 1; if less
than 0, the instruction loads r with a 0. Leaves the values of KENK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LPGE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

▶ LFGT f,r
Load Register on Floating Accumulator Greater Than 0
011000 R\3 0 0 1 F 1 0 1

If the contents of the specified floating accumulator axe greater than
0, the instruction loads the specified r with a 1; if less than or
equal to 0, the instruction loads r with a 0. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFGT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

3 - 6 5 S e c o n d E d i t i o n

INSTRUCTION SETS GU__DE

^ LFLE f ,r
Load Register on Floating Accumulator Less Than or Equal to 0
011000 R\3 0 0 1 F 0 0 1

If the contents of the specified floating accumulator are less than or
equal to 0, the instruction loads the specified r with a 1; if greater
than 0, the instruction loads r with a 0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

▶ LFLI fir,data
Load FIR Immediate
0 0 0 0 0 0 1 0 1 1 0 0 F 0 1 1
INTEGER\16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FIR. Clears the
upper bits of the FLR. Leaves the values of CBIT, KENK, the condition
codes, and the associated FAR unchanged.

▶ LFLT f ,r
Load Register on Floating Accumulator Less Than 0
011000 R\3 0 0 1 F 0 0 0

If the contents of the specified floating accumulator are less than 0,
the instruction loads the specified r with a 1; if greater than or
equal to 0, the instruction loads r with a 0. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFLT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

^ LFNE f ,r
Load Register on Floating Accnjtmulator Not Equal to 0
011000 R\3 0 0 1 F 0 1 0

If the contents of the specified floating accumulator are not equal to
0, LFNE loads the specified r with a 1; if equal to 0, LFNE loads r
with a 0. Leaves the values of KENK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

S e c o n d E d i t i o n 3 - 6 6

I MODE

LFNE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the system Architecture Reference
Guide.)

▶ LGE R
Load Register on Greater Than or Equal to 0
0 1 1 0 0 0 R \ 3 0 0 0 0 1 0 0

If the contents of the specified R axe greater than or equal to 0, the
instruction loads r with a 1; if less than 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

▶ LGT R
Load Register on Greater Than 0
0 1 1 0 0 0 R \ 3 0 0 0 0 1 0 1

If the contents of the specified R are greater than 0, the instruction
loads r with a 1; if less than or equal to 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

^ LH r,address
Load HalfWord
0 0 10 0 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Loads the 16-bit contents
contained in the location specified by EA into r. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

IH also has a register-to-register and an immediate form. (See
Appendix B.)

^ LHEQ r
Load r on EQ
0 1 1 0 0 0 R \ 3 0 0 0 1 0 1 1

If the contents of the specified r are equal to 0, the instruction
loads r with a 1; if not equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3 - 6 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

LHGE r
Load r on GE
O l l O O O R \ 3 O O O O I O O

If the contents of the specified r are greater than or equal to 0, the
instruction loads r with a 1; if less than 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

▶ LHGT r
Load r on GT
0 1 1 0 0 0 R \ 3 0 0 0 1 1 0 1

If the contents of the specified r are greater than 0, the instruction
loads r with a 1; if less than or equal to 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

▶ LHLl r,address
Load Halfword Shifted Left by 1
0 0 0 10 0 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Shifts the contents of the
location specified by EA left one bit and stores the result in the
specified r. (Shifts zero into the vacated bit.) Leaves the values of
CBIT, KENK, and the condition codes unchanged.

Note

LHLl also has a register-to-register form. (See Appendix B.)

▶ LH__2 r,address
Load Halfword Shifted Left by 2
0 0 110 0 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA left two bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

LHL2 also has a register-to-register form. (See Appendix B.)

S e c o n d E d i t i o n 3 - 6 8

I MODE

▶ LKL3 r,address
Load Halfword Shifted Left ty 3
0 1110 1 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

(XLculates an effective address, EA. Shifts the 16-bit contents of the
location specified ty EA left three bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) Leaves the values
of CBIT, KENK, and the condition codes unchanged.

Note

I_HL3 also has a register-to-register form. (See Appendix B.)

If LHL3 is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the system Architecture Reference Guide.)

▶ IHLE r
Load r on LE
0 1 1 0 0 0 R \ 3 0 0 0 1 0 0 1

If the contents of the specified r are less than or equal to 0, the
instruction loads r with a 1; if greater than 0, the instruction loads
r with 0. Leaves the values of KENK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

▶ LHLT r
Load r on LT
0 1 1 0 0 0 R \ 3 0 0 0 0 0 0 0

If the contents of the specified r are less than 0, the instruction
loads r with a 1; if greater than or equal to 0, loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

^ LHNE r
Load r on NE
0 1 1 0 0 0 R \ 3 0 0 0 1 0 1 0

If the contents of the specified r axe not equal to 0, the instruction
loads r with a 1; if equal to 0, the instruction loads r with a 0.
Leaves the values of KENK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3 - 6 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ HOT address
Load IOTLB
O O O O O O O O O O I O O I O O
AP\32

Loads a specified IOTLB entry. Table 3-4 shows the contents of the
KEOT entry and the origin of the information. The values of CBIT,
KENK, and the condition codes are indeterminate.

Table 3-4
HOT Data

O r i g i n Descr ip t ion

AP in LIOT

Page table

(3*2 register

Virtual address in I/O segment (calculated
from the EA).

Physical address (translation of the
virtual address) obtained from I/O
segment. If the fault bit is set
to 1, a page fault occurs.

Target virtual address. This is the
segment number and page number of the
virtual address that will be used by
procedures accessing this information.
This is used to help invalidate the
proper locations in the cache. The
segment number and the low-order 10
bits (offset number in the page) are
ignored.

Note

This is a restricted instruction.

▶ LIP R,address
Load Indirect Pointer
110 10 1 DR\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Loads the value contained in the
location specified by EA into the specified R. Checks these contents
for a pointer fault.

This pointer fault is generated when the contents of the memory
location to be loaded into the specified R contain a pointer fault (bit
1 contains 1).

Second Edition 3-70

I MODE

If this pointer fault occurs, the pointer to the memory location is
saved in FADER (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FOODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

Leaves the values of CBIT, KENK, and the condition codes unchanged.

Note

LIP should weaken the ring field against the ring field of the
effective address. This is not done on some current
processors, but will be done on all future processors.

If LIP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ LLE R
Load Register on Less Than or Equal to 0
0 1 1 0 0 0 R \ 3 0 0 0 0 0 0 1

If the contents of the specified R are less than or equal to 0, the
instruction loads r with a 1. If the contents of R are greater than 0,
the instruction loads r with a 0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.)

▶ LLT R
Load Register on Less Than 0
0 1 1 0 0 0 R \ 3 0 0 0 0 0 0 0

If the contents of the specified R are less than 0, the instruction
loads r with a 1. If the contents of R are greater than or equal to 0,
the instruction loads r with a 0. Leaves the values of KINK and CBIT
unchanged. The condition codes reflect the result of the cjomparison.
(See Appendix A.)

▶ LNE R
Load Register on Not Equal to 0
0 1 1 0 0 0 R \ 3 0 0 0 0 0 1 0

If the contents of the specified R are not equal to 0, the instruction
loads r with a 1; if equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

3 - 7 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ LPID
Load Prooess ID
O O O O O O O l l O O O l l l l

Loads the process ID from bits 1 to 10 of (3*2 into RPID (the prooess ID
register, which contains the 10 most significant bits of the user's
address space). Leaves the values of CBIT, KENK, and the condition
codes unchanged.

The RPID data is used to update the prooess 3D field of an STLB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STLB data is still valid (STLB hit) or not
(STLB miss). This register is for internal machine operation, and
should not normally be modified ty the user.

Note

LPID is a restricted instruction.

^ LPSW address
Load PSW
0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1
AP\32

Changes the status of the prooessor ty loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruct ion.

Addresses a 64-bit (4-halfword) block at the specified location. The
block has the following format.

O f f s e t i n B l o c k C o n t e n t s

1 to 2 New program counter (ring, segment, offset numbers)

3 N e w k e y s

4 N e w m o d a l s

Loads the program counter and keys of the currently running prooess
with the contents of the first three offsets (bits 1 to 48), then loads
the processor modals with the contents of the fourth offset (bits 49 to
64).

The new value of bit 15 in the keys, the in-dispatch bit, can
temporarily halt execution of the current prooess. This bit is altered
ty software only during a cold or a warm start. If bit 15 is 0, the
currently executing prooess will continue to execute, but at a location
defined ty the new value of the program counter. If bit 15 is 1, the

S e c o n d E d i t i o n 3 - 7 2

I MODE

processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, execution resumes at the point defined ty the value
of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the prooessor,
not the process.

The LPSW instruction loads the 64 bits (four halfwords) of the register
set that the STLR instruction cannot correctly load. STLR does not
update the separate hardware registers the prooessor uses to maintain
duplicate information for optimization. Never use the LPSW instruction
to change bits 9 to 11 of the modals. These bits specify the current
user register set. This means that if you do not know the current
value of these bits, you must do the following each time you want to
execute an LPSW:

1. Inhibi t interrupts.

2. Read the current values of modal bits 9 to 11 with an LDLR '24
inst ro ic t ion.

3. Mask the old values of the modal bits into the new information.

4. Load the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this
sequence, since the values of modal bits 9 to 11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,
bits 9 to 11 are 010 because the prooessor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored ty the break because these
values axe still correct.

You should not use LPSW to set bits 16 (the save-done bit) or 15 (the
in-dispatcher bit) of the keys, unless you axe merely loading status
following a fault, check, or interrupt. When issuing LPSW after a
Master (Hear, make sure you load zeros into both of these bits.

Note

This is a restricted instruction.

▶ LT r
Logic Set True
0 1 1 0 0 0 R \ 3 0 0 0 1 1 1 1

Loads the specified r with 1. Leaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate.

3 - 7 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ M R,address
Multiply Fullword
10 0 0 10 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 32-bit value
contained in the location specified ty EA by the 32-bit value contained
in the specified R. Stores the 64-bit result in the specified R and
R+l. The least significant bit of the result is contained in bit 32 of
R+l. The 150/250, 450/550/250-11, 1450-11, and 2250 processors leave
the CBIT and LINK unchanged. The other 50 Series processors reset the
value of the CBIT to 0 and leave the value of LINK indeterminate. For
all 50 Series processors, the condition codes are unchanged. This
instruction cannot cause an overflow or generate an integer exception.

Note

R must be an even numbered register.

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ MH r, address
Multiply Halfword
1 0 1 0 1 0 R\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Multiplies the 16-bit value
contained in the location specified ty EA ty the 16-bit value contained
in the specified r. Stores the 32-bit result in R. Bit 32 of R
contains the least significant bit of the result. The value of the
CBIT is reset to 0. The value of LINK is indeterminate, and the
condition codes are unchanged. This instruction cannot cause an
overflow or generate an integer exception.

Note

MH r also has a register-to-register and an immediate form.
See Appendix B for more information.

S e c o n d E d i t i o n 3 - 7 4

I MODE

^ N R, address
AND Fullword
OOOOll ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Logically ANDs the value
contained in the specified R with the 32-bit value contained in the
location specified ty EA. Stores the result in the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ NFYB address
Notify to BegiJining
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
AP\32

Notifies on semaphore at address specified in second and third
halfwords of the instruction. Uses LIFO (last in, first out) queueing.
Does not cleax the currently active interrupt. The values of CBIT,
LINK, and the condition codes are indeterminate. For more information,
see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

▶ NFYE address
Notify to End
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
AP\32

Notifies on semaphore at the address specified in second and third
hal fwords of the instruct ion. Uses FIFO (first in , first out)
queueing. Does not cleax the currently active interrupt. The values
of CBIT, LINK, and the condition codes are indeteiminate. For more
information, see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

3 - 7 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

NH r, address
AND Halfword
0 0 10 11 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Logically ANDs the value
contained in the specified r with the 16-bit value contained in the
location specified ty EA. Stores the result in r. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

NH also has a register-to-register and an immediate form. See
Appendix B for more information.

▶ NOPNo Operation
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Does nothing. Leaves the values of CBIT, KENK, and the condition codes
unchanged.

S e c o n d E d i t i o n 3 - 7 6

I MODE

▶ 0 R,address
CR Fullword
OlOOll ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Logically CRs the value contained
in the specified R with the 32-bit value contained in the location
specified ty EA. Stores the result in the specified R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

^ CH r, address
CR Halfword
0 1 1 0 1 1 R\3 TM\2 SR\2 BR\2
[DISPLACEMENTS]

C^culates an effective address, EA. Logically ORs the value contained
in the specified r with the 16-bit value contained in the location
specified ty EA. Stores the result in r. Leaves the values of CBIT,
LINK, and the condition codes uiichanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ OTK r
Output Keys
0 1 1 0 0 0 R \ 3 0 1 1 1 0 0 1

Stores the contents of the specified r in the keys. Resets bits 15 to
16 of the keys to 0. Loads CBIT, KENK, and the condition codes from
the specified r as a result of the operation. If this instruction is
executed in Ring 0, it inhibits interrupts during execution of the next
i n s t r u c t i o n .

3 - 7 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

^ PCL address
Procedure Call
100110001 TM\2 SR\3 BR\2
DISPLACEMENTS

See Chapter 8 of the System Architecture Reference Guide for a complete
description of this instruction. Sets CBIT, LINK, and the condition
codes to the values contained in the ECB.

Note

When arguments axe to be transferred to the called procedure,
this instruction uses (3*5 and (3*7, destroying the previous
contents of these registers. XB is updated if an AP has the S
bit = 0. The contents of (3*5, (3*7, and XB remain unchanged if
no arguments axe transferred. The contents of the condition
codes, CBIT, and LINK are not correctly saved in the ECB along
with the rest of the caller's keys.

▶ PID R
Position for Integer Divide
0 1 1 0 0 0 R \ 3 0 1 0 1 0 1 0

Positions a register for integer divide. Loads the contents of the
specified R into R+l. Extends the sign of R (bit 1) into bits 2 to 32
of R. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

R must be a even numbered register.

▶ PIDH r
Position r for Integer Divide
0 1 1 0 0 0 R \ 3 0 1 0 1 0 1 1

Moves the contents of the specified r (bits 1 to 16 of R) into bits 17
to 32 of R. Extends the contents of bit 1 of r into bits 2 to 16 of R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 7 8

I MODE

▶ PIM R
Position After Multiply
O l l O O O R \ 3 0 1 0 1 0 0 0

Checks bit 1 of R+l to see if it is the same as all the bits in the
specified R, and then moves the contents of R+l into R. If bit 1 of
R+l was not the same as all the bits in R, an overflow occurs which
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. The values of KENK and the condition codes are
-Lncleterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
PIM instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

R must be an even numbered register.

^ PIMH r
Position r after Multiply
0 1 1 0 0 0 R \ 3 0 1 0 1 0 0 1

Checks the contents of bit 17 of the specified R to see if it has the
same value as do all of bits 1 to 16 of R, and then moves the contents
of bits 17 to 32 into bits 1 to 16. If bit 17 was different from all
of bits 1 to 16, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
axe indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of R in bits 1 to 16 of R, PIMH can
modify all 32 bits of R, meaning that the contents of bits 17
to 32 of R are indeterminate at the end of this instruction.

3 - 7 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUTDE

^ PRTNProcedure Return
O O O O O O O l l O O O l O O l

Deallocates the stack frame created for the executing procedure and
returns to the environment of the prooedure that called it.

To deallocate the frame, the instruction stores the current value of
the stack base register into the free pointer. It then restores the
caller's state ty loading the caller's program counter, stack base
register, linkage base register, and keys with the values contained in
the frame being deallocated. Sets bits 15 to 16 of the keys to 0.

Loads the ring number in the program counter with the logical OR
(weaker) of the saved program counter ring and the current ring number.
This process prevents inward returns but also allows returns from gated
calls to work properly.

▶ PTLB
Purge TLB
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

(3*2 contains the address of a physical page, right justified. Based on
the value of (3*2 bit 1, PTLB purges either the first 128 locations of
the STLB (i.e., not the IOTLB), or a specified physical page. If (3*2
bit 1 contains a 1, the instruction performs a complete purge. If (3*2
bit 1 contains a 0, the instruction purges the page specified ty (3*2.
Leaves the values of CBIT, LINK, and the condition codes __ndeteiminate.
See Chapters 1, 4, and 11 of the System Architecture Reference Guide
for more information about the STLB and IOTLB.

Note

This is a restricted instruction.

Qn the 750, 850, 2350 to 9955 II, insert a CRE (Cleax E)
instruction before PTLB. Since PTLB uses E (GR3 in I mode) as
a pointer, the CRE zeros GR3 before PTLB manipulates it. If an
interrupt occurs during PTLB's execution, (3*3 points to the
location PTLB is currently purging. PTLB leaves the contents
of GR3 in an undefined state at the end of its execution.

S e c o n d E d i t i o n 3 - 8 0

I MODE

▶ QFAD address
Quad Precision Floating Add
011110110 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result, if necessary, and loads it into QAC. An
overflow or underflow causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QPC address
Quad Precision Floating Compare
100110111 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Compares the contents of QAC
(explained in Chapter 6 of the System Architecture Reference Guide) to
the 112-bit contents of the location specified ty EA. Leaves the
values of CBIT and KENK unchanged. Sets the condition codes (OC) to
the outcome of the comparison as shown below.

C o n d i t i o n C C

Contents of QAC > contents of location specified ty EA. GT

Contents of QAC = contents of location specified ty EA. EQ

Contents of QAC < contents of location specified ty EA. LT

Qn some processors, QPC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

3 - 8 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

If QFC is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFCM
Quad Precision Floating Complement1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0

Forms the two's complement of the value contained in QAC. (See Chapter
6 of the System Architecture Reference Guide.) Normalizes the result,
if necessary, and stores it in QAC. An underflow or overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes axe
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

If QFCM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ QFDV address
Quad Precision Floating Point Divide
100110110 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Divides the contents of QAC ty
the 112-bit contents of the location specified ty EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and stores the whole quotient into QAC. An overflow,
underflow, or divide ty to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
KENK and the condition codes are indeteiminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

S e c o n d E d i t i o n 3 - 8 2

I MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFLD address
Quad Precision Floating Load
011110100 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an extended, augmented effective address, EA. Performs one
of the following actions with the value contained in the location
specified ty EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, there is no
normalization of the result. (See Chapter 6 of the System Architecture
Reference Guide for more information.) Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Note

If QFLD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFMP address
Quad Precision Floating Point Multiply
100110101 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Multiplies the contents of QAC ty
the 112-bit contents of the location specified ty EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and stores it into QAC. An overflow or underflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes axe
ii_dete:nminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
informat ion.

3 - 8 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

If QFMP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFSB address
Quad Precision Floating Point Subtract
011110111 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA. Subtracts the 112-bit contents of
the locations specified by EA from the contents of QAC. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and loads it into QAC. An overflow or underflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
in format ion.

Note

If QFSB is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ QFST address
Quad Precision Floating Store
011110101 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Stores the contents of QAC into
the 128 bits of memory specified by EA. Leaves the values of KENK,
CBIT, and the condition codes unchanged.

Note

QFST does not normalize the result before storing it into the
specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

S e c o n d E d i t i o n 3 - 8 4

I MODE

^ QINQ
Quad to Integer, in Quad Convert
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0

Strips the fractional portion of QAC as described in Table 3-5,

Table 3-5
QINQ Actions

Exponent Value

'337 <= Exp

'200 < Exp < '337

'200 = Exp

'200 > Esq)

Act ion

No operation.

If sign >= 0, strip fractional paxt of QAC
for result.

If sign < 0 and fractional paxt <> 0, strip
fractional paxt of QAC and increment
integer portion of QAC ty 1.

If sign < 0 and fractional paxt = 0, no
action is done.

If sign >= 0, result = 0.
If sign < 0 and bits 2 to 96 = 0 result = -1.
If sign < 0 and bits 2 to 96 <> 0 result = 0.

Result = 0.

QINQ can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
resets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
in format ion.

Note

If QINQ is used for any earlier system listed in "About
Book", an unimplemented instruction (UII) fault occurs.
Chapter 10 of the System Architecture Reference Guide.)

This
(See

3-85 Second Edition

INSTRUCTION SETS GUIDE

▶ QIQR
Quad to Integer, in Quad Convert Rounded
1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1

Strips the fractional portion of QAC as described in Table 3-6.

Table 3-6
QIQR Actions

Exponent Value
'337 <= Exp

'177 < Exp < '337

Exp = '177

Action

No operation.

If sign >= 0, round.*
If sign < 0 and fractional paxt <> 0.5,**

round and strip the fractional paxt
of QAC.

If sign >= 0, result = 0.
If sign < 0 and bits 2 to 96 = 0, result = -1.
If sign < 0 and bits 2 to 96 <> 0, result = 0.
For all cases increment integer paxt by 1 if

it exists and the most significant bit of
QAC = 1.

Exp < '177 I The result is 0.

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
integer.
0.5 implies a QAC fraction with the MSB = 1 and all other bits = 0.

QIQR can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
sets CBIT to 0. The values of KENK and the condition codes axe
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the QIQR instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Second Edition 3-86

I MODE

Note

If QIQR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

3 - 8 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ RBQ r,address
Remove Entry From Bottom of Queue
0 1 1 0 0 0 R \ 3 1 0 1 1 0 1 1
AP\32

The address pointer in this instruction points to the QCB for a queue.
The instruction removes the entry from the bottom of the referenced
queue and loads it into the specified r. If the queue was not empty,
this instruction sets the condition codes to reflect not equal to. If
the queue was empty, resets r to 0 and sets the condition codes to
reflect equal to. Leaves the values of CBIT and KENK unchanged.

^ RGB
Reset CBIT to 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Resets CBIT to 0. Leaves the values of LINK and the condition codes
unchanged.

^ RMC
Reset Machine Check Flag to 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Resets the machine check mode (bits 15 to 16 of the modals) to 0.
Leaves the values of CBIT, KINK, and the condition codes unchanged.
Inhibits interrupts for the next instruction.

Note

This is a restricted instruction.

^ ROT R,address
Rotating Shift
0 10 10 0 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-7.

S e c o n d E d i t i o n 3 - 8 8

I MODE

Table 3-7
EA Format for ROT Shift Command

B i t s Value I Interpretation

17 0 1
1 1

18 0 1
1 1

19 to 26

27 to 32

Shif t left .
Shift right.

Word shift (32 bits).
Halfword shift (16 bits).

Ignored.

Values specify the two's complement of the
number of bits to shift. A value of 0
indicates a shift of 64 places; of -1,
1 place; of -63, 63 places; and so on.

Uses EA to perform a rotating shift on the contents of the specified R.
Stores the shifted result in R. CBIT and KENK contain the value of the
last bit shifted out. Leaves the values of the condition codes
unchanged.

^ RRST address
Restore Registers
0 0 0 0 0 0 0 1 1
AP\32

10 0 1111

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Restores the contents of
these registers from this save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save
area are a save mask, whose format appears in Figure 3-3. A mask bit
value of 1 means that the corresponding register had nonzero contents
that have been saved in the save area; a mask bit value of 0 means
that the corresponding register's contents were 0. Leaves the values
of CBIT, KENK, and the condition codes unchanged.

3-89 Second Edition

INSTRUCTION SETS GUIDE

Table 3-8
RRST and RSAV Save Area Format

Offset # C o n t e n t s I

1 Save mask I
2 to 5 F R I (F) l
6 to 9 F R O 1

10 to 11 X, GR7 1
12 to 13 G R 6 1
14 to 15 Y, S, (3*5 1
15 to 17 G R 4 1
18 to 19 E , (3 * 3 1
20 to 21 A, B, L, (3*2 1
22 to 23 G R 1 1
24 to 25 G R O 1
26 to 27 X B 1

1 4 6 7 8 9 10 11 12 13 14 15 16

10000 IFR1 IFRO 1(3*7 IGR6 IGR5 IGR4 1(3*3 1(3*2 1(3*1 1(3*0 1

Save Mask Format, RRST and RSAV Instructions
Figure 3-3

^ RSAV address
Save Registers
0 0 0 0 0 0 0 1 1
AP\32

10 0 110 1

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Saves the nonzero
contents of these registers in the save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save
area are a save mask, whose format appears in Figure 3-3. This
instruction sets the mask bit of each register as follows: to 1 if the
register's contents have a nonzero value; to 0 if a 0 value. Leaves
the values of CBIT, KENK, and the condition codes unchanged.

Second Edition 3-90

I MODE

▶ RTQ r,address
Remove Entry From Top of Queue
0 1 1 0 0 0 R \ 3 1 0 1 1 0 1 0
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into the specified r. If the queue was not empty, the
instruction sets the condition codes to reflect not equal to 0. If the
queue was empty, resets r to 0 and sets the condition codes to reflect
equal to. Leaves the values of CBIT and LINK unchanged.

^ RTS
Reset Time Slice
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1

Valid for the 550-11, 750, 850, 1450, and new processors.

GR2H (bits 1 to 16) contain a negative value that represents the number
of milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds until zero when the time slice
ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.
RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of (3*2H from the sum of the
timers. Stores the result in the elapsed timer. Loads the contents of
(3*2H into the interval timer. Leaves the contents of (3*2H unchanged.
The values of CBIT, KENK, and the condition codes axe unchanged. The
addition performed ty this instruction is equivalent to the following
series of instructions:

LH O.ITH /* Load (3*0 with contents of ITH.
Subtract reset value in GR2H from (3*0 contents
Sign extend the contents of GRQH into bits

17 to 32 of (3*0.
Skip next 16-bit halfword if CBIT is 0.
Complement GRO.
Add ITH and ET.
Store result in ET.

STH 2,ITH /* Store (3*2 contents in ITH.

Note

RTS is a restricted instruction.

3 - 9 1 S e c o n d E d i t i o n

SH 0,2 / *
pteh / *

/ *
SRC / *
CMH / *
A O.ET / *
ST 0,ET / *

INSTRUCTION SETS GUIDE

▶ S R,address
Subtract Fullword
OIOOIO ER\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-hit value
contained in the location specified by EA from the value contained in
the specified R. Stores the result in the specified R. If overflow
occurs, an integer exception results. If no integer exception occurs,
CBIT is reset to 0. LINK contains the borrow bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction also has a register-to-register and an
i-mmediate form. See Appendix B for more information.

▶ SCB
Set CBIT to 1
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Sets the value of CBIT to 1. The value of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

▶ SOC r, address
Store C Character
10 110 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENT\16

Uses the C language pointer to store a single character from bits 9 to
16 of the specified r into a location in memory. (Bits 1 to 8 of r are
not modified and do not affect this operation.) When bit 4 of the C
pointer contains 0, the character is stored into bits 1 to 8 of the
address; if bit 4 of the pointer contains 1, the character is stored
into bits 9 to 16 of the address. Leaves the values of the CBIT, LINK,
and condition codes unchanged.

Note

The SOC instruction is valid only for general register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

S e c o n d E d i t i o n 3 - 9 2

I MODE

In paxticulax, do not use the immediate or register-to-register
form with the SOC instruction because it would be interpreted
as an ACP instruction. (SOC and ACP share the same opcode, but
ACP uses the immediate and register-to-register form.)
However, direct addressing will obtain the first byte (of two)
pointed to by the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E hit reset.

If SCC is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

^ SH r,address
Subtract Halfword
0 110 10 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Subtracts the 16-bit value
contained in the location specified by EA from the value contained in
the specified r and stores the result in r. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to 0.
KENK contains the borrow bit. The condition codes reflect the result
of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

The SH instruction also has a register-to-register and an
imirediate form. See Appendix B for more information.

▶ SHA R,address
Arithmetic Shift
0 0 110 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-9.

3 - 9 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 3-9
EA Format for SHA Shift Command

B i t s Value I n t e r p r e t a t i o n 1

17 S h i f t l e f t . I
S h i f t r i g h t . I

18 W o r d s h i f t (3 2 b i t s) . 1
H a l f w o r d s h i f t (1 6 b i t s) . 1

19 to 26 I g n o r e d . i

27 to 32 Values specify the two's complement of 1
the number of bits to shift. A value I
of 0 indicates a shift of 64 places; I
of -1, 1 place; of -63, 63 places; 1
a n d s o o n . I

Uses EA to perform an arithmetic shift on the contents of the specified
R, and stores the result of the shift in R.

For a right
shifted out.

shift, CBIT and LINK contain the value of the last bit
The values of all other shifted-out bits axe lost.

For a left shift, an overflow causes an integer exception. If there is
no integer exception, CBIT is reset to 0. The value of LINK is
indeterminate.

All shifts leave the values of the condition codes unchanged.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ SHL R,address
Logical Shift
0 0 0 10 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-10.

Second Edition 3-94

I MODE

Table 3-10
EA Format for SHL Shift Command

Bits i Value I Interpretation

17 0 1
1 1

18 0 1
1 1

19 to 26

27 to 32

Shif t left .
Shift right.

Word shift (32 bits).
Halfword shift (16 bits).

Ignored.

Values specify the two's complement of
the number of bits to shift. A value
of 0 indicates a shift of 64 places;
of -1, 1 place; of -63, 63 places;
and so on.

Uses EA to perform a logical shift on the contents of the specified R.
Stores the shifted result in R. CBIT and LINK contain the value of the
last bit shifted out. The values of all other shif ted-out bits are
lost. Leaves the values of the condition codes unchanged.

▶ SHLl r
Shift r Left 1
0 1 1 0 0 0 R \ 3 0 1 1 1 1 1 0

Shifts the contents of the specified r to the left one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

▶ SHIS r
Shift r Left 2
0 1 1 0 0 0 R\3 0 1 1 1 1 1 1

Shifts the contents of the specified r to the left two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
shifted out. The value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

3-95 Second Edition

INSTRUCTION SETS GUTDE

SHR1 r
Shift r Right 1
O l l O O O R \ 3 1 0 1 0 0 0 0

Shifts the contents of the specified r to the right one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

^ SHR2 r
Shift r Right 2
0 11 0 0 0 R \ 3 1 0 1 0 0 0 1

Shifts the contents of the specified r to the right two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
shifted out. The value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

▶ SL1 R
Shift Register Left 1
0 1 1 0 0 0 R \ 3 0 1 1 1 0 1 0

Shifts the contents of the specified R to the left one bit and stores
the result in R. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

▶ SL2 R
Shift Register Left 2
0 1 1 0 0 0 R \ 3 0 1 1 1 0 1 1

Shifts the contents of the specified R to the left two bits and stores
the result in R. CBIT and KENK contain the value of the last bit
shifted out; the value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

▶ SRI R
Shift Register Right 1
0 1 1 0 0 0 R \ 3 0 1 1 1 1 0 0

Shifts the contents of the specified R to the right one bit and stores
the result in R. CBIT and KENK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

S e c o n d E d i t i o n 3 - 9 6

I MODE

▶ SR2 R
Shift Register Right 2
0 11 0 0 0 R \ 3 0 1111 0 1

Shifts the contents of the specified R to the right two bits and stores
the result in R. CBIT and KENK contain the value of the last bit
shifted out; the value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

▶ SSM R
Set Sign Minus
0 1 1 0 0 0 R \ 3 0 1 0 0 0 1 0

Sets bit 1 of the specified R to 1.
and the condition codes unchanged.

Leaves the values of CBIT, KENK,

▶ SSP R
Set Sign Plus
0 1 1 0 0 0 R \ 3 0 1 0 0 0 1 1

Resets bit 1 of the specified R to 0. Leaves the values of CBIT, KENK,
and the condition codes unchanged.

▶ SSSN
Store System Serial Number
0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0

This instruction is applicable only for the 2350 to the 9955 II. A
14-chaxacter system identifier programmed into these prooessors during
manufacturing consists of a 2-chaxacter plant location code followed by
a 12-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the remaining halfwords axe
reserved for future expansion and axe 0.

Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About
Book", an un__mplemented instruction (UII) fault occurs.
Chapter 10 of the System Architecture Reference Guide.)

This
(See

3-97 Second Edition

INSTRUCTION SETS GUIDE

ST R,address
Store Fullword
0 10 0 0 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENT\16

Calculates an effective address, EA. Stores the contents of the
specified R into the location specified by EA. Leaves the values of
the CBIT, LINK, and condition codes unchanged.

^ STAR R, address
Store Addressed Register
10 110 0 ER\3 TM\2 SR\3 BR\2
DISPI_ACEMENT\16

Calculates a 32-bit (word) effective address, EA. Stores the contents
of the specified R into the register location specified by the offset
portion of EA. Bit 2 and bit 12 of the offset portion of EA deteimine
the actions of this instruction, as shown in Table 3-11.

Table 3-11
STAR Actions

Bit 2 I Bit 12 I Action

Ignore bits 1 and 3 to 9. The offset portion
of EA specifies an absolute register number
from 0 to '377.

Bits 13 to 16 of the offset portion of EA
specify one of the registers '20 to '37 in
the current register set.

Bits 13 to 16 of the offset portion of EA
specify one of the registers 0 to '17 in
the current register set.

♦This is a restricted instruction.

Leaves the values of CBIT and LINK unchanged. The values of the
condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

Second Edition 3-98

I MODE

Note

Do not use the STAR instruction to write into the prooedure
base, keys, or modals. You can use LPSW to change any of these
three registers. In addition, you can use a control transfer
to change the prooedure base, or a mode control operation to
change the keys or modals. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

If the current ring is not 0 and EA is outside the range of 0
to '17 inclusive, any access causes an RXM violation.

▶ STC flr.r
Store Character
011000 R\3 1 1 1 FIR 1 1 0

If the contents of the specified FLR axe nonzero, the instruction
stores the contents of bits 9 to 16 of the specified r into the
character tyte address contained in the associated FAR. Updates the
contents of the appropriate FAR so that they point to the next
character. Decrements the contents of the specified FLR ty 1. Sets
the condition codes to NE.

If the contents of the specified FIR axe 0, the instruction sets the
condition codes to EQ and does not store a chaxacter.

The instruction leaves the values of KENK and CBIT unchanged.

Note

When the instruction specifies FIRO, FARO is used. When the
instruction specifies FLR1, FAR1 is used.

▶ STCD R,address
Store Conditional Fullword
0 1 1 0 0 0 R \ 3 1 0 1 1 1 1 1
AP\32

Compares the contents of R+l and the contents of the 32-hit location
referenced ty the specified address pointer. If the two values are
equal, the instruction stores the contents of R in that referenced
location. If the two values are not equal, execution continues with
the next instruction. STCD is an interlocked operation, guaranteed to
work in a multiprocessor.

Leaves the values of CBIT and LINK unchanged. The condition codes
indicate reflect the result of the comparison. (See Appendix A.)

3 - 9 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

R must be an even numbered register.

^ STCH r, address
Store Conditional Halfword
0 1 1 0 0 0 R \ 3 1 0 1 1 1 1 0
AP\32

Compares the contents of bits 17 to 32 of the specified R with the
contents of the location referenced by the specified address pointer.
If the two values axe equal, the instruction stores the contents of r
into that referenced location. If the two values are not equal,
execution continues with the next instruction. Leaves the values of
CBIT and LINK unchanged. Sets the condition codes to EQ if the store
occurs and to NE if not.

The compaxison and store will not be separated by execution of other
instructions. Therefore, no instruction can alter the contents of the
specified memory location between the compaxe and the store.

Note

This instruction is useful when two cooperating, sequential
processes axe manipulating shared data. It is interlocked
against direct memory I/O. This means you can use it to
interlock a process with a EMA, EMC, or EMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

^ STEX R
Stack Extend
0 1 1 0 0 0 R \ 3 0 0 1 0 1 1 1

Extends the length of the procedure stack. The designated R contains a
32-bit number that specifies the halfword size of the extension. (A
halfword is 16 bits.)

The firmware rounds up the number contained in the specified R to an
even number of halfwords. The instruction uses this value to allocate
a block of memory to the procedure stack. The extension and the
initial stack segment do not have to be contiguous, since there may not
have been enough room left in the initial stack to contain a complete
frame.

Returns a segment number/offset number in the specified R that
specifies the starting address of the extension. The extension is
automatically deallocated when the current procedure completes
execution. There is no limit on the number of extensions you can make.

S e c o n d E d i t i o n 3 - 1 0 0

I MODE

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeteiminate. See Chapters
8 and 10 of the System Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

▶ STFA fax,address
Store FAR
0 0 0 0 0 0 1 0 1 1 0 1 F A R 0 0 0
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the specified address
pointer. If the bit number field of the specified FAR contains 0, the
instruction stores the first 32 bits (two halfwords) of the pointer and
clears the pointer's extend bit to 0. If the bit number field of the
specified FAR does not contain 0, the instruction saves all 48 bits
(three halfwords) of the pointer and sets the pointer's extend bit to
1. Leaves the values of CBIT, LINK, and the condition codes
indeterminate.

^ STH r, address
Store Halfword
0 110 0 1 ER\3 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Stores the contents of the
specified r into the 16-bit location specified by EA. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

▶ STPM
Store Processor Model Number
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Stores the CPU model number and microcode revision number in an
8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field in memory. Table 3-12 shows the format of the field.

3 - 1 0 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 3-12
STFM Memory Field Format

Halfword Name Descr ipt ion

1 to 2 Processor Contains a code speci fy ing t h e m a c h i n e : I
Model OL - 400/500, no 15L - 9950 1
Number Rev B microcode 16L - 9650 1

IL - 400, Rev. B 17L - 2550 1
microcode 18L - 9955 1

2L - Reserved 19L - 9750 1
3L - 350 21L - 2350 1
4L - 450/550 22L - 2655 1
5L - 750 23L - 9655 1
6L - 650 25L - 2450 1
7L - 250 30L - 9955 II 1
8L - 850 31L - 2755 1
9L - 250-11 34L - 6350 1

10L - 550-11 42L - 9755 1
11L - 2250

3 to 4 Microcode Offset 3:
Revision Bits 1 to 8 Reserved

Bits 9 to 16 Manufacturing microcode I
r e v i s i o n n u m b e r I

Offset 4:
Bits 1 to 16 Eng ineer ing m ic rocode 1

r e v i s i o n n u m b e r 1

5 Processor Specifies options enabled for this machine: 1
T.JTtft Bits 1 to 15 Reserved; m u s t b e 0 I

Bit 16 M a r k e t i n g s e g m e n t 1
s p e c i fi c a t i o n b i t 1

6 Extended To be implemented.
Microcode
ID

7 to 8 Reserved for future use.

The STPM instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

STPM is a restricted instruction.

Second Edition 3-102

I MODE

^ STTM
Store Process Timer
O O O O O O O I O I O O I O O O

Valid for the 550-11, 850, 1450, and 2350 to 9955 II.

The current process time is represented ty the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions. (Register 0 is
not actually modified by the STTM instruction.)

LDAR 0, PB% + '25 / *
A 0, = '10L / *
ST 0, TEMPI / *
LDAR 0, PB% + '30 / *
IRH / *
STH 0, XB% + 2 / *
IRH / *
PIDH / *
A 0, TEMPI, * / *
ST 0, XB% + 0

Get PCB address.
Offset of elapsed time.
Elapsed time address -> Temp.
Read timer.
Store low order

16 bits.
Adjust

weighting.
Add elapsed time.

Leaves the values of the CBIT, KENK, and condition codes indeteiminate.
This instruction is not implemented on the 2250.

^ SVC
Supervisor Call
0 0 0 0 0 0 0 1 0 10 0 0 10 1

Supervisor call. Generates a directed fault.
CBIT, LINK, and the condition codes unchanged.

Leaves the values of

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

3-103 Second Edition

INSTRUCTION SETS GUIDE

▶ TC R
Two's Complement Register
0 1 1 0 0 0 R \ 3 0 1 0 0 1 1 0

Forms the two's complement of the contents of the specified R and
stores the result in R. An overflow causes an integer exception. If
there is no integer exception, CBIT is reset to 0. The value of KENK
is indeterminate. The condition codes reflect the result of the
operation. (See Appendix A.)
If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

▶ TCH r
Two's (complement r
0 1 1 0 0 0 R \ 3 0 1 0 0 1 1 1

Forms the two's complement of the contents of the specified r and
stores the result in r. An overflow causes an integer exception. If
there is no integer exception, CBIT is reset to 0. The value of KENK
is indeterminate. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

^ TCNP address
Test C Null Pointer
111110110 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Tests bits 4 to 32 of the C
language pointer in the location specified ty EA for zero. When these
bits axe zero, this instruction sets the condition codes equal to zero;
otherwise the condition codes axe set not equal to zero. The values of
the CBIT and KENK are unchanged.

Note

The TCNP instruction also has a register addressing form. The
syntax and format for this form of TCNP is:

TCNP R
0 1 1 0 0 0 R \ 3 1 1 1 1 0 0 0

S e c o n d E d i t i o n 3 - 1 0 4

I MODE

(The expected form for TCNP register addressing would be

1 1 1 1 1 0 1 1 0 0 0 S R \ 3 0 0

but this is, in fact, unimplemented.)

If TCNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

▶ TFTR flr,R
Transfer FLR to Register
0 1 1 0 0 0 R\3 1 1 1 FLR 0 1 1

Transfers the contents of the specified FLR into the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

^ TM address
Test Memory Fullword
100110100 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Sets the condition codes
according to the numerical value of the 32-bit contents of the location
specified by EA. (See Appendix A.) Leaves the values of KENK and CBIT
unchanged.

^ TMH address
Test Memory Halfword
101110100 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Sets the condition codes
according to the numerical value of the contents of bits 1 to 16 of the
location specified by EA. (See Appendix A.) Leaves the values of LINK
and CBIT unchanged.

▶ TRFL flr.R
Transfer Register to FIR
011000 R\3 1 1 1 FLR 1 0 1

Transfers the contents of R into the specified FLR. Clears bits 1 to
11 of R to 0 so that bits 1 to 6 of the specified FIR will be 0.
Leaves the values of CBIT, KENK, and the condition codes unchanged.

3 - 1 0 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Note

The TRFL instruction allows you to load the specified FLR with
a value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment.

▶ TSTQ r,address
Test Queue
0 11 0 0 0 R \ 3 1 0 0 0 1 0 0
AP\32

The address pointer in this instruction points to the QCB of a queue.
This instruction tests the referenced queue and sets r to equal the
number of items in the queue. Sets the condition codes to EQ when the
queue is empty. If the queue is not empty, the instruction sets the
condition codes to NE. Leaves the values of CBIT and LINK unchanged.

S e c o n d E d i t i o n 3 - 1 0 6

I MODE

^ WAIT address
Wait
O O O O O O O O l l O O l l O l
AP\32

The address pointer in this instruction points to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than 0,
either the resource is not available, or the event has not occurred.
Removes the PCB from the ready list, suspending the prooess, and adds
it to the wait list associated with the semaphore. It then makes the
register set available, turns off the process timer, and goes to the
dispatcher to find another process to run. The dispatcher enables
interrupts.

If C is less than or equal to 0, the currently executing process
continues.

If the instruction places the PCB on the wait list, no general
registers axe saved. This means that a prooess cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Leaves CBIT, LINK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

3 - 1 0 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

X R, address
Exclusive CR Fullword
10 0 0 11 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Performs an exclusive CR of the
contents of the specified R with the 32-bit value contained in the
location specified ty EA. Stores the result in the specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

▶ XAD
Decimal Add
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Performs a decimal arithmetic operation under control of FARO, FAR1,
and (3*2.

FARO contains the address of field 1. FAR1 contains the address of
field 2. (3*2 contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
3-13.

Table 3-13
XAD Decimal Operations

B CB Operation Destination I

0 0 +F1+F2 F 2 l

0 1 +F1-F2 F 2 1

1 0 -F1+F2 F 2 1

1 1 -F1-F2 F 2 1

The scale differential field in the control word specifies the
difference in the decimal point alignment between Fl and F2, as
fo l lows:

Second Edition 3-108

I MODE

SD Relation of Fl and F2

S D > 0 F l > F 2

S E h O F l = F 2

S D < 0 F l < F 2

If the T bit is set to 1, the results are forced positive. If the add
operation results in an overflow, a decimal exception occurs. If no
overflow occurs, the XAD instruction resets CBIT to 0 to indicate
success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

The registers used axe (3*0, (3*1, (3*3, (3*4, CRB, FARO, FAR1, FIRO, and
FIR1. At the end of the instruction, the contents of these registers
axe __n_leterminate. The value of KENK is also indeterminate. The
condition codes reflect the state of F2 after the decimal operation.
(See Appendix A.)

▶ XBTD
Binary to Decimal Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1

Converts a binary number to a decimal number. FARO contains the
decimal field address. GS2 contains the contro l word. This
instruction uses fields A, E, and H of the control word. H specifies
the length of the binary number and its location, as follows:

H L e n g t h L o c a t i o n

0 16 bits (3*3 register, high side

1 3 2 b i t s (3 * 3 r e g i s t e r

2 6 4 b i t s D A C 1 r e g i s t e r

Converts the specified binary integer to a decimal integer and stores
the result in the location specified ty FARO. Leaves the values of
LINK indeterminate. Overflow results in a decimal exception. If no
overflow occurs, resets CBIT to 0. The values of the condition codes
axe indeterminate.

The registers used axe (3*0, (3*1, GR3, GR4, CRB, FARO, and FLRO. At the
instruction's end, the contents of the registers are indeteiminate.

3 - 1 0 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

When the souroe register contains all zeros, the destination register
will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

The XBTD instruction does not use or modify FAR1, FER1, or
FAC1.

^ XCM
Decimal Compare
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0

Compares two decimal numbers and sets the condition codes clepending on
the result of the compare. Uses the G field of the control field to
adjust the two numbers before the compaxe, as follows:

G F i e l d D e c i s i o n

>0 Low-o rde r d ig i t s o f F l on l y a f f ec t t he i n i t i a l
borrow from the low-order digit of F2.

<0 Assume Fl is zero-extended with low zeros.

FARO contains the address of field 1 (Fl). FAR1 contains the address
of field 2 (F2). (3*2 contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

The registers used axe GRO, GR1, GR3, GR4, GR6, FIRO, and FI_R1. At the
end of this instruct ion, the contents of these registers are
incleterminate. When there is no decimal exception, CBIT is reset to 0.
(This instruction cannot cause a decimal exception.) Leaves the value
of LINK indeterminate. The condition codes reflect the result of the
comparison, as follows.

OC Test Result

G T F 2 > F l

EQ F2 = F l

LT F 2 < F l

S e c o n d E d i t i o n 3 - 1 1 0

I MODE

▶ XDTB
Decimal to Binary Conversion
0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0

Converts a decimal string to a binary string. FARO contains the
address of the clecimal string. (3*2 contains the control word.

This instruction uses the A, E, and H fields. Field. H specifies the
length of the binary string and its location, as shown below.

H Leng th Des t ina t ion Reg is te r

0 0 1 6 b i t s (3 * 2 H

0 1 3 2 b i t s (3 * 2

1 0 6 4 b i t s G R 2 / G R 3

Converts the decrimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. If no decimal exception occurs, the instruction
sets CBIT to 0. The values of LINK and the condition codes are
indeteiminate.

The registers used axe GRO, (3*1, (3*3, (3*4, GR6, FARO, and FIRO. At the
end of the instruction, the contents of these registers axe
Indeterminate.

If a clecimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FIR1, or FAC1.

▶ XDV
Decimal Divide
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1

Divides a decimal number, DB, by another, DI, and stores the quotient
and remainder in the location of D2.

FARO contains the address of DI. FAR1 contains the address of D2. L
contains the control word. This instruction uses fields A, B, C, E, F,
and H.

3 - 1 1 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeros equal to the length
of DI.

The XDV instruction divides the two numbers. After the divide, the
location of D2 contains the quotient of length (D2 length - DI length)
followed by the remainder of length (DI length). Since D2 had leading
zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used axe (3*0, (3*1, (3*3, GR4, (3*6, FARO, FAR1, FIRO, and
FLR1. At the end of the instructions, the contents of these registers
axe indeterminate.

At the end of the instruction, the condition codes, LINK, FARO, and
FAR1 contain undefined results. If no overflow occurs, CBIT is reset
to 0.

If DI is 0, overflow occurs and causes a clecimal exception. Decimal
exceptions also occur if DI or D2 has the incorrect data type or if the
length of D2 is less than that of DI. If no decimal exception occurs,
the instruction resets CBIT to 0.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

▶ XED
Numeric Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0

Edits the contents of a string under control of a subprogram. The
registers used are GR2, XB, FARO, FAR1, and FLRO. At the end of the
instruction, the contents of these registers and the CBIT, LINK, and
condition codes are indeterminate.

FARO contains the address of the souroe string. The source string must
be leading separate sign type and must have at least the same number of
decimal digits and the decimal point alignment as called for in the
edit subprogram.

PARI contains the address of the destination string. Bits 1 to 8 of
(3*2 contain the floating chaxacter; bits 9 to 16, the status register.
Bits 17 to 24 of (3*2 contain the number of remaining bytes to be
processed (used if a fault or interrupt occurs). Bits 25 to 32 of CR2
contain the suppression chaxacter whose initial value is determined ty
bit 12 of the keys ('240 if bit 12 contains 0; '40 if bit 12 contains
1). XB contains the address of the edit subprogram.

S e c o n d E d i t i o n 3 - 1 1 2

I MODE

The instruction uses an edit subprogram to alter a source string and
store the edit result in a destination location(s). To set up, perform
a clecimal move to correct the type, alignment, and length of the number
to be edited. Next, use a LCEQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 3^1, where:

L is 1 if this 16-bit halfword is the last halfword
in the subprogram,

0 if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

1 2 3 4 8 9 1 6

I L I 0 0 I E I M I

Edit Subprogram Halfword Format
Figure 3^4

The XED instruction uses several variables internally to control the
edit subprogram. These axe shown in Table 3-14. There are 17 edit
suboperators, shown in Table 3-15.

3 - 1 1 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table 3-14
XED Internal Variables

D e fi n i t i o n

Zero suppression character; contained in B. Initial
value is the space character ('240 or '40 if bit 12
of the keys contains 0 or 1, respectively).

Floating edit character; contained in GR2. Initial
value is not defined.

Sign of the source field. The first character fetch
sets up the value of this variable.

End zero suppression flag.

Table 3-15
XED Suboperators

1 Subop Mnem 1

1 00 ZS i

1 01 I L l

1 02 SS 1

1 03 ICS l

1 04 ID 1

Zero Suppress. Fetches M digits from the source
field consecutively, each time checking SIG. If
SIG is 1, copies the digit into the destination
string. If SIG is 0 and the digit is not 0,
inserts the floating character (if defined)
and copies the digit into the destination field.
If SIG is 0, the digit is not 0, and the
floating character is not defined, sets the SIG
flag and copies the digit into the destination.
If SIG and the digit are both 0, substitutes
SC for the 0 digit in the destination field.

Insert Literal. Copies M into the
destination string. Increments XB and FAR1 ty 1.

Set Suppress Character. Sets SC to M and
increments XB ty 1.

Insert Character. If SIG is 1, copies M into the
destination string. If SIG is 0, copies SC into
the destination string. Increments XB and, FAR1
by 1.

Insert Digits. If SIG is 0, and FC is defined,
copies FC and M digits into the destination field
then sets SIG to 1. Increments XB ty 1, FARO ty
M, and FAR1 ty M+l. If SIG is 0 and FC is not
defined, sets SIG to 1 and copies M digits from
the source to the destination. Increments XB ty
1 and both FARO and FAR1 by M. If SIG is 1,
copies M digits from the source to the
destination and increments XB by 1 and both FARO
and FAR1 by M.

Second Edition 3-114

I MODE

Table 3-15 (continued)
XED Suboperators

l Subop I Mnem I

1 05 I ICM 1

1 06 1 ICP 1

1 07 1 SFC l

1 10 1 SFP 1

1 11 SFM 1

I 12 SFS 1

1 13 JZ 1

1 14 FS 1

1 15 SF 1

1 16 IS 1

1 17 SD 1

1 20 EBS 1

Name and Description

Insert Character if Minus. If SIGN = 0, copies
M into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FAR1 by 1.

Insert Character if Plus. If SIGN = 0, copies M
into the destination string. If SIGN = 1,
copies SC into the destination string.
Increments both SB and FAR1 by 1.

Set Floating Character. Sets PC to M and
increments XB by 1.

Set Floating if Plus. If SIGN = 0, sets PC to M.
If SIGN =1, FC to SC. Increments XB by 1.

Set Floating if Minus. If SIGN = 1, sets PC to M.
If SIGN = 0, sets PC to SC. Increments XB by 1.

Set Floating to SIGN. If SIGN = 0, sets FC to
'253. If SIGN = 1, sets FC to '255. Increments
XB by 1.

Jump if Zero. If the condition flag in A = 0,
increments XB by 1. If the condition flag in A
= 1, adds M to XB and then increments XB by 1.

Fill with Suppression Characters. Copies SC
M times into the destination string. Increments
XB by 1 and FAR1 by M.

Set Significance. If SIG = 0 and FC <> 0, inserts
FC into the destination string, sets SIG to 1,
and increments XB and FAR1 by 1. If SIG = 0 and
FC = 0, sets SIG to 1 and increments XB and FAR1
by 1. If SIG = 1, increments XB by 1.

Insert Sign. If SIGN = 0, copies '253 into the
destination string. If SIGN = 1, copies '255
into the destination string. Increments XB by 1.

Suppress Digits. Fetches M digits from the souroe
string and checks if they axe '260. If the souroe
digit = '260, inserts SC into the destination
string. If the source digit <> '260, copies the
source digit into the destination string.
Increments XB by 1 and both FARO and FAR1 by M.

Embed Sign. Fetches M digits from the souroe
string. If SIGN = 0, copies each digit into the
destination string. If SIGN = 1, embeds a minus
sign into each digit before copying it into the
destination string. Table 6-15 shows the
characters used to represent the sign/digit
combinations. A } symbol represents negative 0.

3-115 Second Edition

INSTRUCTION SETS GUIDE

^ XH r, address
Exclusive OR Halfword
10 10 11 ER\3 TM\2 SR\3 BR\2
[DISPLACEMENTS]

Calculates an effective address, EA. Performs an exclusive OR of the
contents of the specified r with the 16-bit value contained in the
location specified by EA. Stores the result in r. Leaves the values
of CBIT, KENK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

^ XMP
Decimal Multiply
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0

Multiplies one decimal number, M, by another, DI, and stores the result
in D2's location in memory. M is right justified in field D2 at the
start of the operation.

FARO contains the address of DI. FAR1 contains the address of D2. (3*2
contains the control word; this instruction uses fields A, B, C, E, F,
G, H, and T. Field G, the scale differential, must contain the number
of decimal digits in M.

The number of decimal digits in D2 is greater than or equal to the
number of decimal digits in DI plus the number of clecimal digits in M
(specified by G). Normally, the digits to the left (more significant
side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by DI and stores the result in the
location specified by FAR1. The result of the multiply is:

DI x M + partial product field

The partial product field is equal to:

length(D2) - M.

The partial product field is left justified in D2's location. The
maximum partial product added in per traverse of the multiplicand is:

souroe digits + multiplier digits processed

S e c o n d E d i t i o n 3 - 1 1 6

I MODE

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits

If the T bit contains a 1, the results are forced positive.

The registers used are (3*0, (3*1, (3*3, (3*4, GR6, FARO, FAR1, and XB. At
the end of this instruction, the contents of these registers are
indeterminate. At the end of the XMP instruction, the condition codes
reflect the state of the result. (See Appendix A.) Overflow causes a
decimal exception. If no overflow occurs, XMP resets CBIT to 0. KENK
contains undefined results.

A decimal exception occurs if there are more potential or actual
product digits than there is space in D2. If a clecimal exception
occurs and bit 11 of the keys contains a 0, the instruction sets CBIT
to 1. If bit 11 contains a 1, the instruction sets CBIT to 1 and
causes a decimal exception fault. See Chapter 10 of the System
Architecture Reference Guide for more information.

^ XMV
Decimal Move
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. (3*2 contains the control word.
This instruction uses fields A, B, D, E, F, G, H, and T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, the instruction changes the sign of the souroe field during
the move. If the D field in the control word is 1 and the scale
differential is greater than 0, the instruction rounds the souroe field
during the move. If the scale differential (from the H field) is less
than 0, the instruction pads the souroe field with SD trailing zeros
before transferring.

If the T bit is set to 1, the result will be forced positive.

An overflow causes a decimal exception. If no clecimal exception
occurs, the instruction resets CBIT to 0. At the end of the
instruction, LINK, FARO, and FAR1 contain undefined results. The
values of the condition codes reflect the state of the destination
field after the move. (See Appendix A.)

3 - 1 1 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

If a decimal exception occurs and bit 11 of the keys contains a 0, the
XMV instruction sets CBIT to 1. If bit 11 contains a 1, the
instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information about decimal exceptions.

Note

The souroe and destination strings may not overlap in memory.

S e c o n d E d i t i o n 3 - 1 1 8

I MODE

▶ ZCM
Compaxe Chaxacter Field
O O O O O O l O O l O O l l l l

Compares two fields and sets the condition codes depending on the
result of the compaxe. Uses registers (3*3, (3*4, FARO, PARI, FIRO, and
FLR1. At the end of this instruction, the contents of these registers
axe indeterminate.

FARO contains the address of field 1 (Fl). FLRO contains an integer
specifying the length of Fl. FAR1 contains the address of field 2
(F2). FTR1 contains an integer specifying the length of P2.

The instruction compares the contents of Fl and F2 on a byte by byte
basis. If the fields are not of equal length, the .Instruction
automatically extends the shorter string with space chaxacters. Sets
the condition codes as a result of the comparison, as follows:

Result of Compare Set Condition Codes

Fl > F2 GT
Fl = F2 EQ
Fl < F2 KT

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses (3*3, (3*4, the FARs, and the FLRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZED
Character Field Edit
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

Controls an edit subprogram.

Uses the registers (3*3, (3*4, FARO, FAR1, and Fli*0. At the end of this
instruction the contents of these registers are indeterminate. Leaves
the values of CBIT, KENK, and the condition codes indeteiminate.

FARO contains the address of the source string. FIRO specifies the
length of the source string. FAR1 contains the address of the

3 - 1 1 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

destination string. XB contains the address of the edit subprogram.

The ZED instruction uses the edit subprogram to alter the souroe
string, then loads the edited result into the destination string. The
subprogram, addressed by the contents of XB, contains a list of
coinmands, each with the format shown in Figure 3-5, where:

L is 1 if this <3ommand is the last command in the subprogram,
0 if it is not;

E is the edit opcode;
M is the edit modifier.

1 2 6 7 8 9 16

1 L 1 00000 1 E 1

ZED Subprogram Word Format
Figure 3-5

Bits 2 to 6 must be 0.

M, the operator modifier, specifies information E uses when editing the
source string. (See Table 3-16.)

E, the edit suboperator, specifies the operation to be performed on the
souroe string. Table 3-16 shows the available values for E.

S e c o n d E d i t i o n 3 - 1 2 0

I MODE

Table 3-16
ZED Suboperators

1 Subop Value I

I CPC OO 1

1 INL 01 1

1 SKC 1 0 l

1 BIX 11 1

Act ion

Copies characters from the source string into the
destination string. If the length of the source
string is greater than the contents of the M field,
then CPC moves a total of M source characters into
the destination string, increments FARO and FAR1 ty
by M, increments XB by 1, and decrements FLRO by M.
If the length of the source string is less than the
the contents of the M field, then CPC moves the
rest of the source string into the destination
string, and then pads the remaining space to be
filled with spaces. (See note.) Increments FARO
ty FIRO and FAR1 ty M, increments XB ty 1, and
and decrements FIRO by FIRO (so FIRO = 0).

Inserts M into the destination string and
increments both XB and FAR1 ty 1.

Skips characters in the souroe string. If the
remaining length of the souroe string is greater
than or equal to the contents of the M field, then
SKC skips over the next M characters of the souroe
field ty incrementing FARO ty M and decrementing
FLRO ty M. If the remaining length of the souroe
string is less than the contents of the M field,
SKC skips over FLRO characters in the souroe string
ty incrementing FARO ty FIRO and decrementing FLRO
ty FIRO (FLRO = 0). In either case, SKC increments
XB ty 1.

Inserts M spaces (see note) into the destination
string, increments FAR1 ty M, and increments XB
ty 1. /V_> AcUcvnu _>/

f^Ltz-t

Note

A space is '240 or '40, depending on whether bit 12 of the keys
is 0 or 1. This instruction uses (3*3, (3*4, the FARs, and the
FLRs during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwrit ten when this instruction
executes, unless you save it ahead of time.

3-121 Second Edition

INSTRUCTION SETS GUIDE

^ Z F I LFill Field with Character
O O O O O O l O O l O O l l l O

Stores a character into a series of destination bytes. Uses registers
(3*3, (3*4, FARO, FAR1, FIRO, and FER1. At the end of this instruction,
the contents of these registers are indeterminate.

Bits 9 to 16 of (3*2 contain the chaxacter to be stored. FAR1 contains
the starting address of the destination field (tyte aligned). FIR1
contains an integer specifying the length of the destination field (in
ty tes) .

The instruction stores the character specified in GR2 in each byte of
the destination field. If FLR1 contains 0, no operation takes place.
Leaves the values of CBIT, KENK, and the condition codes indeterininate.

Note

This instruction uses (3*3, (3*4, the FARs, and the FTRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

^ ZM address
Zero Memory Fullword
100110011 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Loads 0 into the 32-bit location
specified by EA. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ ZMH address
Zero Memory Halfword
101110011 TM\2 SR\3 BR\2
DISPLACEMENTS

Calculates an effective address, EA. Loads 0 into the 16-bit location
specified ty EA. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

S e c o n d E d i t i o n 3 - 1 2 2

I MODE

^ ZMV
Move Character Field
O O O O O O I O O I O O I I O O

Moves a character field from one location to another. Uses registers
(3*3, (3*4, FARO, FAR1, FIRO, and FLR1. At the end of this instruction,
the contents of these registers are indeterminate.

FARO contains the address of the source string (tyte aligned). FIRO
specifies the length in tytes, N, of the source string. FAR1 contains
the address of the destination string (tyte aligned). FLR1 specifies
the length in tytes, M, of the destination string.

Compares N and M. If N is less than M, the instruction moves the
contents of the source string into the destination string followed ty
M-N space chaxacters. A space chaxacter is '2*40 or '40 when bit 12 of
the keys is 0 or 1, respectively. If the destination string is
shorter, the instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FAR1, FIRO, FLR1,
CBIT, LINK, and the condition codes axe indeterminate.

Note

This instruction uses (3*3, GR4, the FARs, and the FLRs during
its operation. Since ZMV does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 of the System Architecture Reference Guide for more
informat ion.

^ ZMVD
Move Chaxacters Between Equal Length Strings
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1

Moves chaxacters from one string to another of equal length. Uses
registers (3*3, GR4, FARO, FAR1, FLRO, and FIR1. At the end of this
instruction, the contents of these registers axe incleterminate.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. FLR1 contains the number of
characters to move, N.

The instruction moves N characters from the source string to the
destination string. Chaxacters axe moved from lower addresses to
higher addresses.

3 - 1 2 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

When the ZMVD instruction completes, the values of FARO, FAR1, FIRO,
FTRl, CBIT, LINK, and the condition codes are indeterminate.

Note

The ZMVD instruction uses (3*3, GR4, the FARs, and the FIRs
during its operation. Since ZMVD does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save
it ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 of the system Architecture Reference Guide for more
information.

▶ ZTRN
Character String Translate
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

Translates a string of characters and stores the translations in the
specified destination. Uses registers (3*3, (3*4, FARO, FAR1, FTJRO, and
FTRl. At the end of this instruction, the contents of these registers
are indeterminate.

FARO contains the address of the source string (tyte aligned). FAR1
contains the address of the destination string (tyte aligned). FIRl
specifies the length of the souroe and destination strings. XB
contains the address of a translation table. Each tyte in the 256-tyte
table contains an alphabetic character.

The instruction uses the address in FARO to reference a chaxacter. It
interprets this chaxacter as an integer, adding it to the contents of
XB to form an address into the translation table. The instruction
takes the referenced chaxacter in the translation table and writes it
into the location specified ty FAR1. After storing the chaxacter, the
instruction increments the contents of FARO and FAR1 ty 1, decrements
the contents of FTRl ty 1, and repeats the operation until FLR1
contains 0.

At the end of the instruction, FARO and FAR1 point to the location that
follows the last tyte of the souroe and destination strings,
respectively. FLR1 contains 0. Leaves the values of XB, CBIT, LINK,
and the condition codes unchanged.

S e c o n d E d i t i o n 3 - 1 2 4

I MODE

Note

This instruction uses (3*3, (3*4, the FARs, and the FTRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

3 - 1 2 5 S e c o n d E d i t i o n

APPENDICES

Condition Code
Information

Bits 9-10 of the keys contain the condition codes. Many arithmetic,
branch, skip, jump, and other instructions set these bits to indicate
the result of a test (result is less than 0, for example), to indicate
whether a value is positive or negative, and so on. Other instructions
use the condition code values as Boolean values. The instruction
entries in Chapters 2 and 3 of this manual also describe how an
instruction affects the state of these bits.

The IT condition code (bit 9 of the keys) contains the extended sign
for arithmetic and comparison operations. The extended sign is the
sign of the result as if the operation had been done on a machine of
infinite precision; thus, LT shows the correct sign of the result
despite any overflow. For logic operations, LT reflects the sign of
the result.

The EQ condition code (bit 10 of the keys) shows whether or not a 16-
or 32-bit result is equal to 0.

Table A-1 shows condition code interpretation for comparison,
arithmetic, and logic operations.

A - 1 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table A-1
Interpretation of Condition Codes

LT, EQ I
Value I Comparison I Arithmetic Logic

00 i Register > 0
i Register > EA
I Reg 1 > Reg 2

Signed result > 0
Unsigned result <> 0

Result <> 0,
High-order bit - 0

01 I Register = 0 I Result = 0
I Register = EA I
i Reg 1 = Reg 2 i

i Result = 0,
I High-order bit
l

= 0

10 i Register < 0
I Register < EA
i Reg 1 < Reg 2

Result < 0 i Result <> 0,
l High-order bit
I

= 1

11 l Not working I Possible if largest
I negative number is
I added to itself.
I (CBIT is set to 1
l as well, to
I indicate overflow.)

I Not working

Second Edition A-2

Addressing
Information

As noted in Chapter 1, the 50 Series prooessors support several kinds
of addressing: d i rect addressing, indexed addressing, indirect
addressing, indirect indexed addressing, and general register relative
addressing. In addition, these processors also have several modes of
addressing, each of which forms addresses differently.

ADERESSING MODES AND FORMATS

The addressing modes are listed below. Their formats and address
formation are supplied in this Appendix.

• 64V Mode, Short Form

• 634V Mode, Long Form and Indirect Form

• 321 Mode

• 32R Mode

• 64R Mode

• 16S Mode

• 32S Mode

Address trap information is also provided at the end of this Appendix.

B - l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

64V Mode Short Form

Figure B-l and Table B-l display and explain 64V mode short form
instructions.

1 1 2 3 6 7 8 1 6 l

1 1 I XI OP 1 S 1 DISPLACEMENT l l

1 1

Instruction Format

1 6 1

1 1 A D E R E S S 1 1

1 I n d i r e c t P o i n t e r F o r m a t 1

64V Mode Formats, Short Form
Figure B-l

Table B-l
64V Mode Short Form Summary

1 I Disp i Inst Type Example F o r m o f E A 1

1 0 0 -
'10-

'400-

'7@ i Direct
'377 1 Direct
'777 1 Direct®®

LDA ADR R E G 1
S B + D 1
I B f D 1

1 0 0-

'10-
'400-

'7® 1 Indexed

'377 1 Indexed
'777 i Indexed®®

IDA AER.X REG, if D+X<'7;@ 1
SB+D+X, if D+X>'7@ 1
S B + D + X 1
L B + E H - X 1

1 1 0-
'10-

' 7® l Indirect
'777 1 Indirect

LDA AER,* I (R E G) 1
I (P B + D) 1

1 1 0- '7 1 Indirect,
Ipreindexed

LDA AER.X* I(REG), if D+X<'7;@l
I (P B + D f X) , 1
i f D + X > ' 7 @ 1

'10- '77 I Indirect,
Ipreindexed

IDA AER,X* I (P B + D f X) 1

'100- '777 I Indirect,
i postindexed

IDA AER,*1 I (P B + D) + X 1

1 0 '-340- '+377I Direct IDA AER P + D 1
1 0 '-340- '+377I Indexed LDA ADR,1 P + E H - X 1
1 1 '-340- '+3771 Indirect IDA AER,* I (P + D) 1
1 1 '-340- '+377I Indirect,

ipreindexed
IDA AER.l* K P + D + X) I

Seco]ad Ecd i t i Dn B-2

AEERESSING INFORMATION

Notes to Table B-l

@ This table assumes segmented mode (modals bit 14 = 1). For
nonsegmented mode, the cttsplacement range is 0 to '37,
rather than 0 to '7. This means that the range '10 to '377
changes to '40 to '377 in nonsegmented mode. The range '400
to '777 remains unchanged.

@@ In these address forms, the displacement offsets the
contents of LB ty '400 (bit 8=1). To compensate for this,
set the contents of LB to the current value of the . link
frame minus '400. For example, if the segment number in LB
is '4002 and the offset number in the displacement is
'177400, the offset of '400 gives the location of the link
frame as segment number '4002, offset number 0.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions DFLX, FLX, JSX, IDX, UJY, QFLX, STX, and STY
do not do Indexing. The effective address is formed as if
bit 2 = 0.

B - 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

64V Mode, Long Form and Indirect Form

Figure B-2 and T&ble B-2 display and explain 64V mode long and indirect
form instructions.

1 2 3 6 7 11 12 13 14 15 16 17 32

I I I X I OP I 11000 I Y I XX I BR I DISP I

3 3 4 8

I AUC3MENT CODE* I

Instruction Format

1 2 3 4 5 1 6 1 7 3 2

I F I RING I 0 I SEGMENT I OFFSET I

32-bit Indirect Pointer Format

1 2 3 4 5 1 6 1 7 3 2 3 3 3 6 3 7 4 8

F I RING I 1 I SBC-MENT I OFFSET I BIT* I RESERVED I

48-td.t Indirect Pointer Format**

* For quad operations only.

** This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure B-2

S e c o n d E d i t i o n B - 4

ADERESSING INFORMATION

Table B-2
64V Mode Long Form, Indirect Summary

1 I BR Instruction Type Example Form of EA I

1 0 OO
01
10
11

Direct LDA AER P B / D 1
S B + D 1
I B + D 1
X B + D 1

1 0 00
01
10
11

Indexed ty Y LDA AER,Y PB/EH-Y 1
S B f D + Y 1
LE5+D+Y 1
X B + D f Y 1

I 0 00
01
10
11

Indexed ty X LDA AER.X PB /D+X 1
SB+D+X 1
L B + D f X 1
XB+D+X 1

1 0 00
01
10
11

Indirect LDA AER,* K P B / D) 1
KSB+D) 1
I (LB+D) 1
I (XB+D) 1

1 1 00
01
10
11

Preindexed ty Y LDA AER.Y* KPB/D+Y) 1
KSB+EH-Y) 1
I(LB+D+Y) 1
KXB+EH-Y) 1

1 1 00
01
10
11

Postindexed ty Y IDA AER,*Y I(PB/D)+Y 1
I(SB+D)+Y 1
I(LB+D)+Y 1
I(XB+D)+Y 1

1 1 00
01
10
11

Preindexed ty X LDA AER,X* KPB/D+X) 1
KSB+D+X) 1
KLB+D+X) 1
I(XB+D+X) 1

1 1 00
01
10

Postindexed ty X LDA AER,*X I(PB/D)+X 1
I(SB+D)+X 1
I(LE5+D)+X 1

11 I(XB+D)+X 1

Notes to Tabl(3 B-2

The prooessor performs X and Y indexing and 32-bit word
(inter-segment) indirection.
PB/D indicates that the displacement is relative to the origin
of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset.

All displacements are within the range 0 to '177777.

B-5 Second Edition

INSTRUCTION SETS GUIDE

The instructions DFLX, FLX, JSX, I_DX, LEY, QFLX, STX, and STY
do not do indexing. The effective address is formed as shown
in Table B-3. Bit 2, the X bit, is used as paxt of the opcode
in these instructions.

Table B-3
Address Formation for Noi Instructions

I X Y Instruction Type I

0 0 0 D i r e c t I
0 0 1 D i r e c t I
0 1 0 D i r e c t I
0 1 1 - D i r e c t I
1 0 0 K A) 1
1 0 1 K A) 1
1 1 0 K A) 1
1 1 1 K A) 1

Notes to Table B-3

For the earlier prooessors listed in "About This Book", see
Appendix B for information on their address formation for
nonindexing instructions.

The .symbol A in Table B-3 represents the value calculated from
the base register (PB, SB, LB, or XB) and displacement in the
instruction.

Second Edition B-6

ADERESSING INFORMATION

321 Mode

Figure B-3 and Table B-4 display and explain 321 mode instructions.

1 6 7 9 10 11 12 14 15 16 17 32

I OP I ER I TM I SR I BR I DISPLACEMENT I

Instruction Format*

1 2 3 4 5 1 6 1 7 3 2

I F I RING I 0 I SEQUENT I OFFSET I

Indirect Pointer Format (Short Form)

1 2 3 4 5 1 6 1 7 3 2 3 3 3 6 3 7 4 8

F I RING I 1 I SEC3MENT I OFFSET I BIT* I RESERVED I

Indirect Pointer Format (Long Form)

1 2 3 4 5 1 6 1 7 3 2

I F I RING I B I SBC-MENT I OFFSET I

C Language Pointer**

16 17 32

I INSTRUCTION BITS 17 TO 32 I ZEROES I

Immediate Type 1***

1 1 6 1 7 3 2

I SIGN EXTENSION I INSTRUCTION BITS 17 TO 32

Immediate Type 2***

1 8 9 5 6 5 7 64
I BITS 17 TO 24 I ZEROES I BITS 25 TO 32

Immediate Type 3 (Floating Point)***, ****

321 Mode Formats
Figure B-3

B-7 Second Edition

INSTRUCTION SETS GUIDE

Notes to Figure B-3
* TM is the tag modifier which, in combination with the SR

and BR fields, specifies the instruction type.
** The C language pointer is not available for the earlier

prooessors listed in "About This Book".
*** The instruction specifies the immediate type to use.

During instruction execution, the processor forms the
__mmediate in the appropriate format and stores it
internal ly for use in the operation as shown in Figure B-3.

**** Bits 1 to 8 of -jranediate Type
instruction bits 17 to 24;
instruction bits 25 to 32.

3 are formed from I mode
bits 57 to 64 from I mode

Table B-4
321 Mode Summary

1 TM SR BR Instruction Type EA (Segment) EA (Offset) 1

1 3 Ind i rec t 1(5 to 16) K D + B R) 1
1 3 >0 Indirect postindexed 1(5 to 16) (I(D+BR))+SRHI
1 2 Ind i rec t 1(5 to 16) I (D + B R) 1
1 2 >0 Indirect preindexed 1(5 to 16) KD+BR+SRH) 1
1 1 Di rec t BR(5 to 16) D f B R 1
1 1 >0 Indexed BR(5 to 16) DfBR+SRH 1
1 0 0-7 Regis te r - to - reg is te r
1 0 Immediate type 1
1 0 >0 Immediate type 2
1 0 Immediate type 3
1 0 Floating register

souroe (FRO)
1 0 Undefined; generates

UII (unimplemented
i i is truct ion) faul t

1 0 Floating register
souroe (FRI)

1 0 4-7 Undefined; generates
UII fault

1 0 0-7 General register
relative (undefined
for the earlier
prooessors listed in
"About This Book")

SR(5 to 16) D f S R L 1

Note to Table B-4

Displacements axe within the range 0 to '177777, inclusive,

Second Edition B-8

AEERESSING INFORMATION

32R Mode

Figure B-4 and Table B-5 display and explain 32R mode instructions.

1 2 3 6 7 8 1 6

I I I X I OP I S I DISP1-ACEMENT I

Short Instruction Format

12 3 6 7 12 13 14 15 16

I I I X I OP I 110000 I OP I CB I

16-bit Long Instruction Format

1 2 3 6 7 12 13 14 15 16 17 32

I I I X I OP I 110000 I OP I CB I DISP I

32-bit Long Instruction Format

1 2 1 6

I I I A E C R E S S I

Indirect Pointer Format

1 2

I 0 I

16

ADDRESS

Final Effective Address Format*

32R Mode Formats
Figure B-4

B-9 Second Edition

INSTRUCTION SETS GUIDE

Note to Figure B-4

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide. Multilevel indirection is a feature of
32R mode.

Table B-5
32R Mode Summary

1 I CB Displacement Instruction Type Form of EAI

1 0 0 to '777 Direct 0 / D 1
1 0 0 to '777 Indexed 0/EH-X 1
1 1 0 to '777 Indirect I(0/D) 1
1 1 0 to '77 Indirect, preindexed KO/DfX) 1
1 1 '100 to'777 Indirect, postindexed I(0/D)+X 1
1 0 '-360 to '+377 Direct P + D 1
1 0 '-360 to '+377 Indexed P+D+X 1
1 1 '-360 to '+377 Indirect I(P+D) 1
1 1 '-360 to '+377 Indirect postindexed I(P+D)+X 1
1 0 ©Postincrement S P 1
I 0 ©Postincrement, indirect,

postindexed
I(SP)+X 1

1 1 ©Postincrement, indirect K S P) 1
1 0 ♦Predecrement S P - 1 1
1 0 ♦Predecrement, indirect,

postindexed
i(sp-i)+xi

1 1 ♦Predecrement, indirect I(SP-l) 1
1 0 0 to '177777 ♦Direct, long reach D 1
I 0 0 to '177777 ♦Indexed, long reach D f X 1
1 1 0 to '177777 ♦Indirect, long reach 1 (D) 1
1 1 0 to '177777 ♦Indirect, pre__ndexed,

long reach
I(DfX) 1

1 1 0 to '177777 ♦Indirect, postindexed,
long reach

I(D)+X 1

I 0 0 to '177777 ♦Direct, stack relative D+SP 1
I 0 0 to '177777 ♦Indexed, stack relative DfSP+X 1
1 1 0 to '177777 ♦Indirect, stack relative I(DfSP) 1
1 1 0 to '177777 ♦Indirect, preindexed

stack relative
KD+SP+X) 1

1 1 0 to '177777 ♦Indirect, postindexed
stack relative

I(DfSP)+Xl

Second Edition B-10

AEERESSING INFORMATION

Notes to Table B-5

* These instruction types use the 32-bit long format shown in
Figure B-4.

@ These instruction types use the 16-bit long format shown in
Figure B-4. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure B-^i. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any paxt of the EA formation results in an address in the
range 0 to '7 (segmented mode) or 0 to '37 (unsegmented mode).
See the end of this chapter for more information.

The prooessor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and STY
do not do indexing. The prooessor treats the X bit as a 0 to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
processor interprets it as 0013.

B - l l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

64R Mode

Figure B-5 and Table B-6 display and explain 64R mode instructions.

1 2 3 6 7 8 1 6

I I I X I OP I S I DISP I

Short Instruction Format

12 3 6 7 12 13 14 15 16

I I I X I OP I 110000 I OP I CB I

16-bit Long Instruction Format

1 2 3 6 7 12 13 14 15 16 17 32

I I X I OP I 110000 I OP I CB I DISP I

32-bit Long Instruction Format

1 1 6

I A D D R E S S I

Indirect Pointer Format*

"Only a single level of indirection is possible in 64R mode.

64R Mode Formats
Figure B-5

Second Edition B-12

ADERESSING INFORMATION

Table B-6 *-
64R Mode Summary

1 I CB Displacement Instruction Type Form of EAI

1 0 0 to '777 D i rec t 0 / D 1
1 0 0 to '777 Indexed 0 / D f X l
1 1 0 to '777 I n d i r e c t I (0 / D) 1
1 1 0 to '77 Indirect, preindexed KO/EM-X) 1
1 1 '100 to '777 Indirect, postindexed I(0/D)+X 1
1 0 '-360 to '+377 D i rec t P + D 1
1 0 '-360 to '+377 Indexed P+D+X 1
1 1 '-360 to '+377 I n d i r e c t I(P+D) 1
1 1 '-360 to '+377 Indirect postindexed I(P+D)+X 1
1 0 ©Postincrement S P 1
1 0 ©Postincrement, indirect,

postindexed
I(SP)+X 1

1 1 ©Postincrement, indirect I (S P) 1
1 0 ♦Predecrement S P - 1 1
1 0 ♦Predecrement, indirect,

postindexed
i(sp-i)+xi

1 1 ♦Predecrement, indirect I(SP-l) 1
I 0 0 to '177777 ♦Direct, long reach D 1
I 0 0 to '177777 ♦Indexed, long reach D f X 1
1 1 0 to '177777 *Indirect, long reach K D) 1
1 1 0 to '177777 ♦Indirect, preindexed, I(DfX) 1

long reach
1 1 0 to '177777 ♦Indirect, postindexed, I(D)+X 1

long reach
1 0 0 to '177777 ♦Direct, stack relative D+SP 1
1 0 0 to '177777 ♦Indexed, stack relative DfSP+X 1
1 1 0 to '177777 ♦Indirect, stack relative I(EN-SP) 1
1 1 0 to '177777 ♦Indirect, preindexed I(Df SP+X) 1

stack relative
1 1 0 to '177777 ♦Indirect, postindexed I(DfSP)+XI

stack relative

B-13 Second Edition

INSTRUCTION SETS GUIDE

Notes to Table B-6

For all the instruction types listed in Table B-6, address
traps can occur when any paxt of the EA formation results in an
address in the range 0 to '7 (segmented mode) or 0 to '37
(unsegmented mode). See the end of this chapter for more
information.
* These instruction types use the 32-bit long format shown in

Figure B-5.

@ These instruction types use the 16-bit long format shown in
Figure B-5. They also increment the contents of SP by 1
during EA formation.
♦ These instruction types use the 16-bit long format shown in

Figure B-5. They also decrement the contents of SP by 1
during EA formation.

The prooessor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLX, JSX, IDX, LEY, QFLX, STX, and STY
do not do indexing. The prooessor treats the X bit as a 0 to
deterinine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
prooessor interprets it as 0013.

S e c o n d E d i t i o n B - 1 4

ADERESSING INFORMATION

16S Mode

Figure B-6 and Table B-7 display and explain 16S mode instructions.

1 2 3 6 7 8 1 6

I I I X I OP I S I DISPLACEMENT I

Instruction Format

1 2 3 1 6

I I I X I A D E R E S S I

Indirect Pointer Format

1 2 3 1 6

I 0 I 0 I A E D R E S S I

Final Effective Address Format

16S Mode Formats
Figure B-6

Note to Figure B-6

The final form of effective addresses in S mode are only 14
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-15 Second Edition

INSTRUCTION SETS GUIDE

Table B-7
16S Mode Summary

I I X I S I Disp Instruction Type I Example IEA Form

0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to

'777
'777
'777
'777
'777
'777
'777
'777

Di rect
Di rec t
Indexed
Indexed
I n d i r e c t
I n d i r e c t
Indirect preindexed
Indirect preindexed

LDA AER
LDA AER
LDA AER,1
LDA AER.l
LDA AER,*
LDA AER,*
LDA AER,1*
LDA AER,1*

0/D
C/D
O/DfX
C/D+X
I (0 /D)
KC/D)
I(DfX)
I (DfX)

Notes to Table B-7

The prooessor performs indexing before resolving each level of
i n d i r e c t i o n .

This mode allows multiple levels of both
i n d i r e c t i o n .

and

The instructions, LEK and STX, cannot do indexing,
effective address is formed as if bit 2 = 0.

The

0/D indicates that the displacement is within Sector 0; C/D,
within the current sector.

Second Edition B-16

ADERESSING INFORMATION

32S Mode

Figure B-7 and Table B-8 display and explain 32S mode instructions.

1 2 3 6 7 8 1 6

I I I X I OP I S I DISPLACEMENT I

Instruction Format

161 2

I I A D E R E S S

Indirect Pointer Format

1 2 1 6

I 0 I A D E R E S S I

Final Effective Address Format

32S Mode Formats
Figure B-7

Note to Figure B-7

The final form of effective addresses in S mode are only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-17 Second Edition

INSTRUCTION SETS GUIDE

Table B-8
32S Mode Summary

I X s Disp Instruction Type Example EA Form 1

0 0 0 0 to '777 D i rec t LDA AER 0 / D 1
0 0 1 0 to '777 Di rect LDA AER C / D 1
0 1 0 0 to '777 Indexed LDA AER,1 0/DfX 1
0 1 1 0 to '777 Indexed LDA AER.l C/DfX 1
1 0 0 0 to '777 I n d i r e c t LDA AER,* I(0/D) 1
1 0 1 0 to '777 I n d i r e c t LDA AER,* KC/D) 1
1 1 0 0 to '77 Ind i rec t preindexed IDA AER.l* I(DfX) 1
1 1 0 '100 to '777 Ind i rec t postindexed LDA AER,*1 I(D)+X 1
1 1 1 0 to '777 I n d i r e c t postindexed LDA AER,*1 I(D)+X 1

Notes to Table B-8

The prooessor performs indexing before resolving each level of
i nd i rec t i on .

This mode allows one level of indexing, and multiple levels of
i nd i rec t i on .

The instructions, LDX and STX, cannot do indexing,
effective address is formed as if bit 2 = 0.

The

ADDRESS TRAPS

Several of the summaries in the last section specifyd special oases of
EA formation when the address is within a particular range. This range
of addresses corresponds to registers within the current user register
set in the register file. (See Chapter 9 of the System Architecture
Reference Guide.) In segmented mode, this range is '0 to '7; in
nonsegmented mode, '0 to '37. This range of addresses for segmented
and nonsegmented modes is referred to as the ATR, or address trap
range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and .system status
and control information. Each time any paxt of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
r e g i s t e r.

Table B-9 summarizes when address traps occur for all modes of
addressing and instruction types.

Second Edition B-18

ADERESSING INFORMATION

Table B-9
Address Trap Information

Mode i Inst Type I Action

16S
32S
32R
64R

64V

Memory
reference I

Generic

Generic AP

32 -b i t
memory
referencei

Short
format

16 -b i t
i n d i r e c t

32 -b i t
i n d i r e c t

Address trap occurs if the EA falls
within the ATR (address trap range).
The instruction format or length has
no bearing.

Address traps never occur.

Address traps do not occur when the
processor is fetching the address
po in te r.

Address traps never occur.

See Table B-10.

Address traps occur if the EA falls
within the ATR.

Address traps never occur.

321 I All types i Address traps never occur.

When bits 17 to 32 of the program counter contain a value within the
ATR and the prooessor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is operating in
321 mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table B-10 lists the conditions that must be present for an address
trap to occur.

B-19 Second Edition

INSTRUCTION SETS GUIDE

Table B-10

Address Trap Action for Short Format
Instructions, 64V Mode

1 I S 1

1 0 0 1
I 0 0 1

1 0 0 1
1 0 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

1 1 0 1

1 1 1 1

Disp Act ion

0 to '7
'10 to '37

'40 to '377
-'340 to +'377

0 to ATR

From ATR to '377

'400 to '777
-'340 to +'377

0 to '777

-'340 to +'377

0 to '777

-'340 to +'377

Takes address trap.
Takes address trap only if

segmentation is off.
Cannot take address trap.
Takes address trap if EA (P+D) is

within the ATR.
Takes address trap if D+X is

within the ATR. If DfX is
outside the ATR, the EA is
SB (seg ♦) I DfX (for the 750,
850, and 2350 to 9955 II; or
SB (seg ♦) I EH-X+SB (offset ♦)
(for all other machines).

Cannot take address trap; EA is
SBfDfX (for 750, 850, and
2350 to 9955 II).
All other machines take address
trap if DfX is within the ATR.

Cannot take address trap.
Takes address trap if EA (P+D+X)

is within the ATR.
Takes address trap if D is

within the ATR.*
Takes address trap if EA

((P+D)) is within the ATR. *
Takes address trap if D<'100 and

DfX is within the ATR.*
Takes address trap if EA (P+D)

is within the ATR.*

Note to Table B-10

* The indirect address also takes an address trap if EA is
within the ATR.

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a temporary register. If a trap occurs, the routine aborts the
write to memory. It loads the specified register file location with
the contents of the temporary register.

Second Edition B-20

AEDRESSING INPCRMATICN

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents
of a register file location. The trap routine loads the cache from the
register file data and allows the processor one cache access before
invalidating the cache location.

Table B-ll shows the address trap locations and the registers to which
they correspond. For more information on the register file, see
Chapter 9 of the System Architecture Reference Guide.

Table B-ll
Address Trap/Register File Correspondence

1 AT S and R Modes V Mode

1 '0
1 '1 A, LH
1 '2 LL
1 '3
1 '4 FAC bits 1 to 16 FAC bits 1 to 16 1
1 '5 FAC bits 17 to 32 FAC bits 17 to 32 1
1 '6 FAC exponent FAC exponent I
1 '7 PC, LSBs PC, LSBs
I '10* DTAR3H DTAR3H
I '11* FOODEH FOODEH
1 '12* FADERL FADDRL
1 '13*
1 '14* SBH
1 '15* SEL
1 '16* LBH
1 '17* LBL
1 '20* EMA cell '20H EMA cell ' 2 Q H 1
1 '21* EMA cell '20L EMA cell ' 2 0 L 1
1 '22* EMA cell '22H EMA cell ' 2 2 H 1
1 '23* EMA cell '22L EMA cell ' 2 2 L 1
1 '24* EMA cell '24H EMA cell ' 2 4 H 1
1 '25* EMA cell '24L EMA cell ' 2 4 L 1
1 '26* EMA cell '26H EMA oell ' 2 6 H 1
1 '27* EMA cell '26L EMA cell ' 2 6 L 1
1 '30* EMA cell '3QH EMA cell ' 3QH 1
1 '31* DMA cell '30L EMA cell ' 3 Q L 1
1 '32* EMA cell '32H EMA cell ' 3 2 H 1
1 '33* EMA cell '32L EMA cell ' 3 2 L 1
1 '34* EMA oell '34H EMA cell ' 3 4 H 1
1 '35* EMA cell '34L EMA cell ' 3 4 L 1
1 '36* EMA oell '36H EMA cell ' 3 6 H 1
1 '37* EMA cell '36L EMA cell ' 3 6 L 1

B-21 Second Edition

INSTRUCTION SETS GUIDE

Note to Table B-ll
* These correspond to user register file

locations only in nonsegmented mode.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be done,
and — in conjunction with the rest of the program — the addressing
mode under which the address is to be formed. Depending on the
segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.

S e c o n d E d i t i o n B - 2 2

Instruction Summary
Charts

This appendix contains two instruction summary charts; one for S, R,
and V modes; another for I mode. Each chart contains a list of
instructions for the Prime 50 Series prooessors. (Appendix E lists
those instructions that have been archived.) Each instruction is
followed ty its octal code, format, function, addressing mode, CBIT,
LINK, and condition code information, and a one-line description of the
instruct ion.

The columns in each chart axe as follows:

R R e s t r i c t i o n s :

Blank Regular instruction.
R Instruction causes a restricted mode fault if

executed in other than Ring 0.
P Instruction may cause a fault depending on

address.

Mnem A mnemonic name recognized ty the assembler PMA.

Opcode Octal operation code portion of the instruction.

RI Register (R) and iEmmediate (I) forms, if available.

C - l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Form Format of instruction:

Mnemonic D e fi n i t i o n

AP Address Pointer
BRAN Branch
CHAR Character
DECI Decimal
GEN Generic
CR General Register — non Memory Refere:
IBRN I Mode Branch
MR Memory Reference — Non I Mode
MRFR Memory Reference — Floating Register
MRC2* Memory Reference — General Register
MRNR Memory Reference — Non Register
PIO Programmed I/O
RGEN Register Generic
SHFT Sh i f t

Func Function of instruction:

Mnemonic D e fi n i t i o n

AEMOD Addressing Mode
BRAN Branch
CHAR Character
CLEAR Clear Field
CPTR C Language Pointer
DECI Decimal Arithmetic
FIELD Field Register
FLPT Floating Point Arithmetic
GRR General Register Relative
INT Integer
INTGY I n t e g r i t y
IO Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move
PCTEJ Program Control and Jump
PRCEX Prooess Exchange
QUEUE Queue Control
SHIFT Register Shift
SKIP Skip

Second Edition C-2

INSTRUCTION SUMMARY CHARTS

M Addressing modes of instruct ions:

M o d e N a m e

s Sectored
R Relat ive
V Virtual (64V)
I 321

C How instruction affects the CBIT and LENK.

C o d e D e fi n i t i o n

CBIT and KENK axe unchanged
1 CBIT = unchanged; LINK = carry
2 CBIT = overflow status; LINK = carry
3 CBIT = overflow status; LINK = incleterminate
4 CBIT = shift extension; LINK = shift extension
5 CBIT = result; LINK = indeterninate
6 CBIT and LINK are indeteiminate
7 CBIT and LINK are loaded ty the instruction
8 CBIT = result; LINK = unchanged
9 CBIT = unchanged; LINK = indeterminate
* CBIT and LINK values vary among prooessors;

see individual instruction description

OC How instruction affects the condition codes.

C o d e D e fi n i t i o n

Condition codes are unchanged.
1 Condition codes axe set to reflect the result

of arithmetic operation or compare.
4 Condition codes are set to reflect result of

branch, compare, or logicize operand Estate.
5 Condi t ion codes are i i ideterminate.
6 Condition codes are loaded ty instruction.
7 Condition codes show special results for this

ins t ruc t i on .

Description A brief description of the instruction.

Table C-l contains a summary of S, R, and V mode instructions. Table
C-2 is a summary of I mode instructions. Instructions that have been
archived axe not in either of these tables; see Appendix E for them.

C - 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Table C-l
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func OC! D e s c r i p t i o n

A1A 141206 GEN INT SRV Add One to A
A2A 140304 GEN INT SRV Add Two to A
ABQ 141716 AP QUEUE Add Entry to Bottom of Queue
ACA 141216 GEN INT SRV Add CBIT to A
AED 06 MR INT SRV Add
ADL 06 03 MR INT Add Long
ADLL 141000 GEN INT Add LINK to L
ALFA 0 001301 GEN FTKTD Add L to FAR 0
ALFA 1 001311 GEN FTETD Add L to FAR 1
ALL 0414XX SHFT SHIFT SRV A Left Logical
AIR 0416XX SHFT SHIFT SRV A Left Rotate
ALS 0415XX SHFT SHIFT SRV A Arithmetic Left Shift
ANA 03 MR LOGIC SRV AND to A
ANL 03 03 MR LOGIC AND to A Long
ARGT 000605 GEN FCTEJ Argument TransferARL 0404KX SHFT SHIFT SRV A Right Logical
ARR 0406XX SHFT SHIFT SRV A Right Rotate
ARS 0405XX SHFT SHIFT SRV A Arithmetic Right Shift
ATQ 141717 AP QUEUE Add Entry to Top of Queue
BCEQ 141602 BRAN BRAN Branch on Condition Code EQ
BOGE 141605 BRAN BRAN Branch on Condition Code GE
BOGT 141601 BRAN BRAN Branch on Condition Code GT
BCLE 141600 BRAN BRAN Branch on Condition Code LE
BCLT 141604 BRAN BRAN Branch on Condition Code LT
BCNE 141603 BRAN BRAN Branch on Condition Code NE
BCR 141705 BRAN BRAN Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN Branch on CBIT Set to 1
BDX 140734 BRAN BRAN Branch on Decremented X
BEY 140724 BRAN BRAN Branch on Decremented Y
BBQ 140612 BRAN BRAN Branch on A Equal to 0
BFEQ 141612 BRAN BRAN Branch on F Equal to 0
BPGE 141615 BRAN BRAN Branch on F Greater Than or

Equal to 0
BPGT 141611 BRAN BRAN Branch on F Greater Than 0
BFLE 141610 BRAN BRAN Branch on F Less Than or

Equal to 0
BFLT 141614 BRAN BRAN Branch on F Less Than 0
BFNE 141613 BRAN BRAN Branch on F Not Equal to 0
BGE 140615 BRAN BRAN Branch on A Greater Than or

Equal to 0
BGT 140611 BRAN BRAN Branch on A Greater Than 0
BIX 141334 BRAN BRAN Branch on Incremented X
BIY 141324 BRAN BRAN Branch on Incremented Y
BLE 140610 BRAN BRAN Branch on A Less Than or

Equal to 0
BLEQ 140702 BRAN BRAN Branch on L Equal to 0

Second Edition C-4

INSTRUCTION SUMMARY CHARTS

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem

BLGE

BLGT
BLLE

BLLT
BENE
BER
BE_S
BLT
BMEQ

EMGE

BMGT

BMLE

BMLT

BMNE

Opcode Form Func M C OC Descr ip t ion

140615 BRAN BRAN

140701 BRAN BRAN
140700 BRAN BRAN

140614
140703
141707
141706
140614
141602

BRAN BRAN
BRAN BRAN
BRAN BRAN
BRAN BRAN
BRAN BRAN
BRAN BRAN

141706 BRAN BRAN V

141710 BRAN BRAN V

141711 BRAN BRAN V

141707 BRAN BRAN V

141603 BRAN BRAN V

- 4
- 4
- 4
- 4
- 4

- 4

BNE 140613 BRAN BRAN
CAL 141050 GEN CLEAR SRV
CALF 000705 AP PCTLJ
CAR 141044 GEN CLEAR SRV
CAS 11 MR SKIP SRV
CAZ 140214 GEN SKIP SRV
CEA 000111 GEN PCTLJ SR
OCT 001314 GEN BRAN
CHS 140024 GEN INT SRV
CLS 11 03 MR LOGIC
CMA 140401 GEN LOGIC SRV
CRA 140040 GEN CLEAR SRV
CRB 140015 GEN CLEAR SRV
CRE 141404 GEN CLEAR
CRL 140010 GEN CLEAR SRV
CRLE 141410 GEN CLEAR
CSA 140320 GE_N MOVE SRV
DAD 06 MR INT SR
I3BL 000007 GEN INT SR
DFAD 06 02 MR FLPT RV

DFCM 140574 GEN FLPT RV

EFCS 11 02 MR FLPT RV

Branch on L Greater Than or
Equal to 0

Branch on L Greater Than 0
Branch on L Less Than or

Equal to 0
Branch on L Less Than 0
Branch on L Not Equal to 0
Branch on LINK Reset to 0
Branch on LINK Set to 1
Branch on A Less Than 0
Branch on Magnitude

Condition EQ
Branch on Magnitude

Condition GE
Branch on Magnitude

Condition GT
Branch on Magnitude

Condition LE
Branch on Magnitude

Condition LT
Branch on Magnitude

Condition NE
Branch on A Not Equal to 0
Cleax A Left Byte
Call Fault Handler
Clear A Right Byte
Compare A and Skip
Compare A with 0
Compute Effective Address
Computed GOTO
Change Sign
Compaxe L and Skip
Complement A
Cleax A to 0
Cleax B to 0
Cleax E to 0
Cleax L to 0
Cleax L and E to 0
Copy Sign of A
Double Add
Enter Double Precision Mode
Double Precision Floating

Add
Double Precision Floating

Complement
Double Precision Floating

Compare and Skip

C-5 Second Edition

INSTRUCTION SETS GUIDE

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C OC Descr ip t ion

DFDV 17 02 MR FLPT RV

DFTD 02 02 MR FLPT RV

DFLX 15 02 MR FLPT

DFMP 16 02 MR FLPT RV

DFSB 07 02 MR FLPT RV

DFST 04 02 MR FLPT RV

DIV 17 MR INT
DIV 17 MR INT SR
DID 02 MR MOVE SR
ERN 040300 GEN FLPT
ERNM 140571 GEN FLPT

ERNP 040301 GEN FLPT

DRNZ 040302 GEN FLPT

ERX 140210 GEN SKIP SRV
DSB 07 MR INT SR
DST 04 MR MOVE SR
DVL 17 03 MR INT
E16S 000011 GEN AEMOD SRV
E32I 001010 GEN AEMOD SRV
E32R 001013 GEN AEMOD SRV
E32S 000013 GEN AEMOD SRV
E64R 001011 GEN AEMOD SRV
E64V 000010 GEN AEMOD SRV
EAA 01 01 MR MOVE
EAFA 0 001300 AP FIELD
EAFA 1 001310 AP FIELD
EAL 01 01 MR PCTEJ
EALB 13 02 MR PCTU
EAXB 12 02 MR PCTU

R EIO 14 01 MR 10
R ENB 000401 GEN 10 SRV
R ENBL 000401 GEN 10 SRV
R ENBM 000400 GEN 10 SRV
R ENBP 000402 GEN 10 SRV

ERA 05 MR LOGIC SRV
ERL 05 03 MR LOGIC
FAD 06 01 MR FLPT RV

Double Precision Floating
Divide

Double Precision Floating
Load

IDouble Precision Floating
Load Index

Double Precision Floating
M u l t i p l y

Double Precision Floating
Subtract

Double Precision Floating
Store

Divide
Divide
Double Load
Double Round From Quad
Double Round From Quad

Towards Negative Infinity
Double Round From Quad

Towards Positive Infinity
Double Round From Quad

Towards Zero
Decrement and Replace X
Double Subtract
Double Store
Divide Long
Enter 16S Mode
Enter 321 Mode
Enter 32R Mode
Enter 32S Mode
Enter 64R Mode
Enter 64V Mode
Effective Address to A
Effective Address to FAR 0
Effective Address to FAR 1
Effective Address to L
Effective Address to LB
Effective Address to XB
Execute I/O
Enable Interrupts
Enable Interrupts (Local)
Enable Interrupts (Mutual)
Enable Interrupts (Process)
Exclusive CR to A
Exclusive OR to L
Floating Add

Second Edition C-6

INSTRUCTION SUMMARY CHARTS

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode

140571

Form Func OC Descr ip t ion

PCDQ GEN FLPT Floating Convert Double to
Quad

PCM 140530 GEN FLPT RV Floating Complement
PCS 11 01 MR FLPT RV Floating Compare and Skip
FDBL 140016 GEN FLPT Floating Convert Single to

Double
FDV 17 01 MR FLPT RV Floating Divide
FLD 02 01 MR FLPT RV Floating Load
FLOT 140550 GEN FLPT Convert Integer to Floating

Point
FLTA 140532 GE-N FLPT Convert Integer to Floating

Point
FLTL 140535 GEN FLPT Convert Long Integer to

Floating Point
FLX 15 01 MR FLPT RV Floating Load Index
FMP 16 01 MR FLPT RV Floating Multiply
FRN 140534 GE.N FLPT RV Floating Round
FRNM 040320 GEN FLPT Floating Round Towards

Negative Infinity
FRNP 040303 GEN FLPT Floating Round Towards

Pos i t i ve Infin i ty
FRNZ 040321 GEN FLPT Floating Round Towards Zero
FSB 07 01 MR FLPT RV Floating Subtract
FSGT 140515 GE-N FLPT RV Floating Skip If Greater

Than 0
FSLE 140514 GEN FLPT RV Floating Skip If Less Than

or Equal to 0
FSMI 140512 GEN FLPT RV Floating Skip If Minus
FSNZ 140511 GEN FLPT RV Floating Skip If Not Equal

to 0
FSPL 140513 GEN FLPT RV Floating Skip If Plus
FST 04 01 MR FLPT RV Floating Store
FSZE 140510 GEN FLPT RV Floating Skip If Equal to 0

R HLT 000000 GEN MCTL SRV Ha l t
IAB 000201 GEN MOVE SRV Interchange A and B
ICA 141340 GEN MOVE SRV Interchange Bytes of A
ICL 141140 GEN MOVE SRV Interchange Bytes and Clear

L e f t
IO* 141240 GEN MOVE SRV Interchange Bytes and Cleax

Right
ILE 141414 GEN MOVE __ntei^hange L and EIMA 13 MR MOVE SRV Interchange Memory and A

R INA 54 PIO 10 SR Input to A
R INBC 001217 AP PRCEX Interrupt Notify Beginning,

Clear Active Interrupt
R INBN 001215 AP PRCEX Interrupt Notify Beginning

C-7 Second Edition

INSTRUCTION SETS GUIDE

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func OC Descr ipt ion

R INEC 001216 AP PRCEX Interrupt Notify End, Cleax
Active Interrupt

R INEN 001214 AP PRCEX Interrupt Notify EndR INH 001001 GEN 10 SRV Inhibit Interrupts
R INHL 001001 GEN 10 SRV Inhibit Interrupts (Local)
R INHM 001000 GEN 10 SRV Inhibit Interrupts (Mutual)
R INHP 001002 GEN 10 SRV Inhibit Interrupts (Process)

INK 000043 GEN KEYS SR Input Keys
INT 140554 GEN FLPT Convert Floating Point to

Integer
INTA 140531 GEN FLPT Convert Floating Point to

Integer
INTL 140533 GEN FLPT Convert Floating Point to

Integer Long
IRS 12 MR SKIP SRV Increment and Replace Memory

R IRTC 000603 GEN 10 Interrupt Return, Clear
Active Interrupt

R IRTN 000601 GEN 10 Interrupt ReturnIRX 140114 GEN SKIP SRV Inciement and Replace X
R ITLB 000615 GEN MCTL Invalidate STLB Entry

JDX 15 02 MR PCTLJ Jump and Decrement X
JIX 15 03 MR PCTLJ Jump and Increment X
«JMP 01 MR PCTEJ SRV Jump
JST 10 MR PCTU SRV Jump and Store
JSX 35 03 MR PCTU RV Jump and Save in X
JSXB 14 02 MR PCTU Jump and Save in XB
JSY 14 MR PCTU Jump and Save in Y
LCEQ 141503 GEN LTSTS Load A on Condition Code EQ
LOGE 141504 GEN LTSTS Load A on Condition Code GE
LCGT 141505 GEN LTSTS Load A on Condition Code GT
LCLE 141501 GEN LTSTS Load A on Condition Code LE
LCLT 141500 GEN LTSTS Load A on Condition Code LT
LCNE 141502 GEN LTSTS Load A on Condition Code NE
LDA 02 MR MOVE SRV Load A
LDC 0 001302 CHAR CHAR Load Character
LDC 1 001312 CHAR CHAR Load Character
LDL 02 03 MR MOVE Load Long

P LDLR 05 01 MR MOVE Load from Addressed Register
IDX 35 00 MR MOVE SRV Load X
LDY 35 01 MR MOVE Load Y
LEQ 140413 GEN LTSTS SRV Load A on A Equal to 0
LF 140416 GEN LTSTS SRV Load False
LFEQ 141113 GEN LTSTS Load A on F Equal to 0
LFGE 141114 GEN LTSTS Load A on F Greater Than or

Equal to 0
LFGT 141115 GEN LTSTS Load A on F Greater Than 0

Second Edition C-8

INSTRUCTION SUMMARY CHARTS

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C OC Description

LFLE 141111 GEN LTSTS V - 4

LFLE 0 001303 BRAN FIELD
LFLI 1 001313 BRAN FIELD
LFLT 141110 GEN LTSTS
LFNE 141112 GEN LTSTS
LGE 140414 GEN LTSTS SRV

LGT 140415 GEN LTSTS SRV
R LIOT 000044 AP MCTL

L__E 140411 GEN LTSTS SRV

T.TiRQ 141513 GEN LTSTS
T.TGE 140414 GEN LTSTS

LDGT 141515 GEN LTSTS
T.T.T. 0410XX SHFT SHIFT SRV
T.T.T.E 141511 GEN LTSTS

LLLT 140410 GEN LTSTS
LE2JE 141512 GEN LTSTS
LER 0412XX SHFT SHIFT SRV
LI_S 0411XX SHFT SHIFT SRV
LLT 140410 GEN LTSTS SRV
LNE 140412 GEN LTSTS SRV

R LPID 000617 GEN MCTL
R LPSW 000711 AP MCTL

IRL 040QXX SHFT SHIFT SRV
L-RR 0402XX SHFT SHIFT SRV
LRS 0401XX SHFT SHIFT SRV
LT 140417 GEN LTSTS SRV
MPL 16 03 MR INT
MPY 16 MR INT
MPY 16 MR INT SR

R NFYB 001211 AP PRCEX
R NFYE 001210 AP PRCEX

NOP 000001 GEN MCTL SRV
R OCP 14 PIO 10 SR

CRA 03 02 MR LOGIC
R OTA 74 PIO 10 SR

OTK 000405 GEN KEYS SR
PCL 10 02 MR PCTU
PID 000211 GEN INT SR
PIDA 000115 GEN INT
PIDL 000305 GEN INT

PIM 000205 GEN INT SR

Load A on F Less Than or
Equal to 0

Load FLR 0 Immediate
Load FLR 1 Immediate
Load A on F Less Than 0
Load A on F Not Equal to 0
Load A on A Greater Than or

Equal to 0
Load A on A Greater Than 0
Load IOTLB
Load A on A Less Than or

Equal to 0
Load L on A Equal to 0
Load L on A Greater Than or

Equal to 0
Load L on A Greater Than 0
Long Left Logical
Load L on A Less Than or

Equal to 0
Load L on A Less Than 0
Load L on A Not Equal to 0
Long Left Rotate
Long Left Shift
Load A on A Less Than 0
Load A on A Not Equal to 0
Load Prooess ID
Load Prooess Status Word
Long Right Logical
Long Right Rotate
Long Right Shift
Load True
Multiply Long
M u l t i p l y
M u l t i p l y
N o t i f y
N o t i f y
No Operation
Output Control Pulse
Inclusive CR
Output from A
Output Keys
Prooedure Call
Position for Integer Divide
Position for Integer Divide
Position for Integer Divide

Long
Position after Multiply

C-9 Second Edition

INSTRUCTION SETS GUIDE

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func CC! D e s c r i p t i o n

PIMA 000015 GEN INT Position after Multiply
PIML 000301 GEN INT Position after Multiply Long
PRTN 000611 GEN PCTU Procedure Return

R PTLB 000064 GEN MCTL Purge TLB
QFAD 5 2 2 MR FLPT Quad Precision Floating Add
QFCM 140570 GEN FLPT Quad Precision Floating

Complement
QFCS 5 2 6 MR FLPT Quad Precision Floating

Compaxe and Skip
QFEIV 5 2 5 MR FE_PT Quad Precision Floating

Div ide
QFLD 5 2 0 MR FLPT Quad Precision Floating

Load
QFLX 6 7 MR FLPT Quad Precision Floating

Load Index
QFMP 5 2 4 MR FLPT Quad Precision Floating

M u l t i p l y
QFSB 5 2 3 MR FLPT Quad Precision Floating

Subtract
QFST 5 2 1 MR FLPT Quad Precision Floating

Store
QINQ 140572 GEN FLPT Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPT Quad to Integer, in Quad

Convert Rounded
RBQ 141715 AP QUEUE Remove Entry from Bottom of

Queue
RGB 140200 GEN KEYS SRV Reset CBIT to 0

R RMC 000021 GEN INTGY SRV Reset Machine Check Flag
to 0

RRST 000717 AP MCTL Restore Registers
RSAV 000715 AP MCTL Save Registers
RTQ 141714 AP QUEUE Remove Entry from Top of

Queue
R RTS 000511 GEN MCTL Reset Time Slice

SIA 140110 GEN INT SRV Subtract 1 from A
S2A 140310 GEN INT SRV Subtract 2 from A
SAR 10026X GEN SKIP SRV Skip on A Register Bit Reset

to 0
SAS 10126X GEN SKIP SRV Skip on A Register Bit Set

to 1
SEL 07 03 MR INT Subtract Long
SCB 140600 GEN KEYS SRV Set CBIT to 1
SGL 000005 GEN INT SR Enter Single Precision Mode
SGT 100220 GEN SKIP SRV Skip on A Greater Than 0
SKP 100000 GEN SKIP SRV Skip

R SKS 34 PIO 10 SR Skip on Condition Satisfied

Second Edition C-1C1

INSTRUCTION SUMMARY CHARTS

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C OC Description

Skip on A Less Than or Equal
to 0

Skip on LSB of A Nonzero
Skip on LSB of A Zero
Skip on Machine Check Reset

to 0
Skip on Machine Check Set

to 1
Skip on A Minus
Skip on A Nonzero
Skip on A Plus
Skip on CBIT Reset to 0
Skip on CBIT Set to 1
Set Sign of A Minus
Set Sign of A Plus
Store System Serial Number
Store A into Memory
Store A Conditionally
Store Character
Store Character
Stack Extend
Store FAR 0
Store FAR 1
Store Long
Store L Conditionally
Store L into Addressed

Register
Store Prooessor Model Number
Store Prooess Timer
Store X
Store Y
Subtract
Supervisor Call
Skip on A Zero
Transfer A to B
Transfer A to Keys
Transfer A to X
Transfer A to Y
Transfer B to A
Two's Complement A
Two's Complement Long
Transfer FTR 0 to L
Transfer FTR 1 to L
Transfer Keys to A
Transfer L to FIR 0
Transfer L to FTR 1
Test Queue

SLE 101220 GEN SKIP SRV

SLN 101100 GEN SKIP SRV
SI2 100100 GEN SKIP SRV
SMCR 100200 GEN INTGY SRV

SMCS 101200 GEN INTGY SRV

SMI 101400 GEN SKIP SRV
SNZ 101040 GEN SKIP SRV
SPL 100400 GEN SKIP SRV
SRC 100001 GEN SKIP SRV
SSC 101001 GEN SKIP SRV
SSM 140500 GEN INT SRV
SSP 140100 GEN INT SRV
SSSN 040310 GEN MCTL
STA 04 MR MOVE SRV
STAC 001200 AP MOVE
STC 0 001322 CHAR CHAR
STC 1 001332 CHAR CHAR
STEX 001315 GEN PCTU
STFA 0 001320 AP FIELD
STFA 1 001330 AP FIELD
STL 04 03 MR MOVE
STLC 001204 AP MOVE

P STEi* 03 01 MR MOVE

R STPM 000024 GEN MCTL
STTM 000510 GEN MCTL
STX 15 MR MOVE SRV
STY 35 02 MR MOVE
SUB 07 MR INT SRV
SVC 000505 GEN PCTU SRV
SZE 100040 GEN SKIP SRV
TAB 140314 GEN MOVE
TAK 001015 GEN KEYS
TAX 140504 GEN MOVE
TAY 140505 GEN MOVE
TBA 140604 GEN MOVE
TCA 140407 GEN INT SRV
TCL 141210 GEN HTT
TFLL 0 001323 GEN FIELD
TFLL 1 001333 GEN FIELD
TKA 001005 GEN KEYS
TLFL 0 001321 GEN FIELD
TLFL 1 001331 GEN FIELD
TSTQ 141757 AP QUEUE

C - l l Second Edition

INSTRUCTION SETS GUIDE

Table C-l (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func CC Descr ip t ion

TXA 141034 GEN MOVE Transfer X to A
TYA 141124 GEN MOVE Transfer Y to A

R WAIT 000315 AP PRCEX Wait
XAD 001100 DECI DECI Decimal Add
XBTD 001145 DECI DECI Binary to Decimal Conversion
XCA 140104 GEN MOVE SRV Exchange and Cleax A
XCB 140204 GEN MOVE SRV Exchange and Cleax B
XCM 001102 DECI DECI Decimal Compaxe
XDTB 001146 DECI DECI Decimal to Binary Conversion
XDV 001107 DECI DECI Decimal Divide
XEC 01 02 MR PCTU RV Execute
XED 001112 DECI DECI Numeric Edit
XMP 001104 DECI DECI Decimal Multiply
XMV 001101 DECI DECI Decimal Move
ZCM 001117 CHAR CHAR Compaxe Character Field
ZED 001111 CHAR CHAR Character Field Edit
ZFIL 001116 CHAR CHAR Fill Field With Character
ZMV 001114 CHAR CHAR Move Character Field
ZMVD 001115 CHAR CHAR Move Chaxacters Between

Equal Length Strings
ZTRN 001110 CHAR CHAR Character String Translate

Second Edition C-12

INSTRUCTION SUMMARY CHARTS

Table C-2
I Mode Instruction Summary

R Mnem Opcode RI Form Func OC Descr ip t ion

A 0 2 R I MRS* INT Add Fullword
ABQ 134 AP QUEUE Add Entry to Bottom of Queue
ACP 5 5 R I GR CPTR Add C Pointer
ADEi* 014 RGEN INT Add LINK to R
AH 1 2 R I MRS* INT Add Halfword
AIP 75 MRGR GRR Add Indirect Pointer
ARFA 0 161 RGEN FIELD Add R to FAR 0
ARFA 1 171 RGEN FIELD Add R to FAR 1
ARGT 000605 GEN PCTU Argument Transfer
ATQ 135 AP QUEUE Add Entry to Top of Queue
BCEQ 141602 BRAN BRAN Branch on Condition Code EQ
BOGE 141605 BRAN BRAN Branch on Condition Code GE
BOGT 141601 BRAN BRAN Branch on Condition Code GT
BCLE 141600 BRAN BRAN Branch on Condition Code LE
BCLT 141604 BRAN BRAN Branch on Condition Code LT
BCNE 141603 BRAN BRAN Branch on Condition Code NE
BCR 141705 BRAN BRAN Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN Branch on CBIT Set to 1
BFEQ 122 IBRN BRAN Branch on F Equal to 0
BPGE 125 IBRN BRAN Branch on F Greater Than or

Equal to 0
BPGT 121 IBRN BRAN Branch on F Greater Than 0
BFLE 120 IBRN BRAN Branch on F Less Than or

Equal to 0
BFLT 124 IBRN BRAN Branch on F Less Than 0
BFNE 123 IBRN BRAN Branch on F Not Equal to 0
BHD1 144 IBRN BRAN Branch on r Decremented by 1
BHD2 145 IBRN BRAN Branch on r Decremented by 2
BHD4 146 IBRA BRAN Branch on r Decremented by 4
BHEQ 112 IBRN BRAN Branch on r Equal to 0
EHGE 115 IBRN BRAN Branch on r Greater Than or

Equal to 0
BHGT 111 IBRN BRAN Branch on r Greater Than 0
BKE1 140 IBRN BRAN Branch on r Incremented by 1
BEE2 141 IBRN BRAN Branch on r Incremented by 2
BEE4 142 IBRN BRAN Branch on r Incremented by 4
BHLE 110 IBRN BRAN Branch on r Less Than or

Equal to 0
BHLT 114 IBRN BRAN Branch on r Less Than 0
BHNE 113 IBRN BRAN Branch on r Not Equal to 0
KLR 141707 BRAN BRAN Branch on KENK Reset to 0
ELS 141706 BRAN BRAN Branch on LINK Set to 1
BMEQ 141602 BRAN BRAN Branch on Magnitude Condition

BQ
Branch on Magnitude Condition

GE
BM.5E 141706 BRAN BRAN

C-13 Second Edition

INSTRUCTION SETS GUTDE

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Flunc cc! D e s c r i p t i o n

BMGT 141710 BRAN BRAN Branch on Magnitude Condition
GT

Branch on Magnitude Condition
LE

Branch on Magnitude Condition
LT

Branch on Magnitude Condition
NE

Branch on Register Bit Reset

BMLE 141711 BRAN BRAN

BMLT 141707 BRAN BRAN

BMNE 141603 BRAN BRAN

BRBR 040-077 IBRN BRAN
to 0

BRBS 000-037 IBRN BRAN Branch on Register Bit Set
to 1

BRD1 134 IBRN BRAN Branch on R Decremented by 1
BRD2 135 IBRN BRAN Branch on R Decremented by 1
BRD4 136 IBRN BRAN Branch on R Decremented by 4
BREQ 102 IBRN BRAN Branch on R Equal to 0
BRGE 105 IBRN BRAN Branch on R Greater Than or

Equal to 0
BRGT 101 IBRN BRAN Branch on R Greater Than 0
BRIl 130 IBRN BRAN Branch on R Incremented by 1
BRI2 131 IBRN BRAN Branch on R Incremented by 2
BRI4 132 IBRN BRAN Branch on R Incremented by 4
BRLE 100 IBRN BRAN Branch on R Less Than or

Equal to 0
BRLT 104 IBRN BRAN Branch on R Less Than 0
BRNE 103 IBRN BRAN Branch on R Not Equal to 0
C 61 RI MRGR INT Compare Fullword
CALF 000705 AP PCTU Call Fault Handler
OCP 45 GR CPTR Compare C PointerOCT 026 RGEN BRAN Computed GOTOCH 71 RI MRGR INT Compare HalfwordCHS 040 RGEN INT Change SignCMH 045 RGEN LOGIC Complement r
CMR 044 RGEN LOGIC Complement R
CR 056 RGEN CLEAR Clear R to 0
CRBL 062 RGEN CLEAR Clear R High Byte 1 Right
CRBR 063 RGEN CLEAR Cleax R High Byte 2 Right
CRHL 054 RGEN CLEAR Cleax R Left Halfword
GRHR 055 RGEN CLEAR Cleax R Right Halfword
CSR 041 RGEN MOVE Copy Sign of R
D 62 RI MRGR INT Divide Fullword
DBLE 106 RGEN FLPT Convert Single to Double

Precision Floating
DCP 160 RGEN CPTR Decrement C Pointer
DFA 15,17 RI MRFR FLPT Double Precision Floating Add
DPC 05,07 RI MRFR FLPT Double Precision Floating

Compaxe

Second Edition C-14

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func OC Descr ip t ion

DPCM 144 RGEN FLPT Double Precision Floating
Convplement

DFD 31,33 RI MRFR FLPT Double Precision Floating
Divide

EFL 01,03 RI MRFR FLPT Double Precision Floating
Load

DFM 25,27 RI MRFR FLPT Double Precision Floating
M u l t i p l y

DFS 21.23 RI MRFR FLPT Double Precision Floating
Subtract

DFST 11,13 MRFR FLPT Double Precision Floating
Store

DH 72 RI MRS* INT Divide Halfword
DH1 130 RGE-N INT Decrement r by 1
DH2 131 RGEN INT Decrement r by 2
EM 60 MRNR INT Decrement Memory Fullword
EMH 70 MRNR INT I3ecrement Memory Halfword
ER1 124 RGEN INT Decrement R by 1
ER2 125 RGEN INT Decrement R by 2
ERN 040300 GEN FLPT Double Round From Quad
ERNM 140571 GEN FLPT Double Round From Quad

Towards Negative Infinity
ERNP 040301 GEN FLPT Double Round From Quad

Towards Positive Infinity
ERNZ 040302 GEN FLPT Double Round From Quad

Towards Zero
E16S 000011 GEN AEMOD Enter 16S Mode
E32I 001010 GEN AEMOD Enter 321 Mode
E32R 001013 GEN AEMOD Enter 32R Mode
E32S 000013 GEN AEMOD Enter 32S Mode
E64R 001011 GEN AEMOD Enter 64R Mode
E64V 000010 GEN AEMOD Enter 64V Mode
EAFA 0 001300 AP FTKT.D Effective Address to FAR 0
EAFA 1 001310 AP FTETiD Effective Address to FAR 1
EALB 42 MRNR PCTU Effective Address to LB
EAR 63 MRS* PCTU Effective Address to R
EAXB 52 MRNR PCTU Effective Address to XB

R EIO 34 MRC3* 10 Execute I/O
R ENB 000401 GEN 10 Enable Interrupts
R ENBL 000401 GEN 10 Enable Interrupts (Local)
R ENBM 000400 GEN 10 Enable Interrupts (Mutual)
R ENBP 000402 GEN 10 Enable Interrupts (Prooess)

FA 014,16 RI MRFR FLPT Floating AddFC 04,06 RI MRFR FLPT Floating Compaxe
FCDQ 140571 GEN FLPT Floating Convert Double to

QuadFCM 100 RGEN FLPT Floating Complement

C-15 Second Edition

INSTRUCTION SETS GUIDE

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func OC Descr ipt ion

FD 30,32 RI MRFR FLPT Floating DivideFL 00,02 RI MRFR FLPT Floating LoadFLT 105,11 RGEN FLPT Convert Integer to Floating
Point

FLTH 102,11 RGEN FLPT Convert Halfword Integer to
Floating Point

FM 24,26 RI MRFR FLPT Floating Multiply
FRN 107 RGEN FLPT Floating Round
FRNM 146 RGEN FLPT Floating Round Towards

Negative Infinity
FRNP 145 RGEN FLPT Floating Round Towards

Posi t ive Infini ty
FRNZ 147 RGEN FLPT Floating Round Towards Zero
FS 20,22 RI MRFR FLPT Floating Subtract
FST 10,12 MRFR FLPT Floating Store

R HLT 000000 GEN MCTL Ha l t
I 41 MRGR MOVE Interchange R and Memory

Ful lword
ICBL 065 RGEN MOVE Interchange Bytes and Clear

L e f t
ICBR 066 RGEN MOVE Interchange Bytes and Clear

Right
ICHL 060 RGEN MOVE ~~ Interchange Halfwords and

Clear Left
ICHR 061 RGEN MOVE Interchange Halfwords and

Clear Right
ICP 167 RGEN CPTR Increment C Pointer
IH 51 MRGR MOVE Interchange r and and Memory

Halfword
IH1 126 RGEN INT Increment r by 1
IH2 127 RGEN INT Increment r by 2
IM 40 MRNR INT Increment Memory Fullword
IMH 50 MRNR INT Increment Memory Halfword

R INBC 001217 AP PRCEX Interrupt Notify Beginning,
Cleax Active Interrupt

R INBN 001215 AP PRCEX Interrupt Notify Beginning
R INEC 001216 AP PRCEX Interrupt Notify End, Cleax

Active Interrupt
R INEN 001214 AP PRCEX Interrupt Notify End
R INH 001001 GEN 10 Inhibi t Interrupts
R INHL 001001 GEN 10 Inhibit Interrupts (Local)
R INHM 001000 GEN 10 Inhibit Interrupts (Mutual)
R INHP 001002 GEN 10 Inhibit Interrupts (Prooess)

INK 070 RGEN KEYS Input Keys
INT 103,11 RGEN FLPT Convert Floating Point to

Integer

Second Edition C-16

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C OC Description

INTH 101,11 RGEN FLPT Convert Floating Point to
Halfword Integer

IR1 122 RGEN INT Increment R ty 1
IR2 123 RGEN INT Increment R ty 2
IRB 064 RGEN MOVE Interchange r Bytes
IRH 057 RGEN MOVE Interchange R Halves

R IRTC 000603 GEN 10 Interrupt Return, Cleax
Active Interrupt

R IRTN 000601 GEN 10 Interrupt Return
R ITLB 000615 GEN MCTL Invalidate STLB Entry

<0MP 51 MRNR PCTU Jump
JSR 73 MRS* PCTU Jump to Subroutine
JSXB 61 MRNR PCTU Jump and Save in XB
L 0 1 R I MRGR MOVE Load
LOC 45 MRG* CPTR Load C Character
LCEQ 153 RGEN LTSTS Load r on Condition Code EQ
LOGE 154 RGEN LTSTS Load r on Condition Code GE
LOGT 155 RGEN LTSTS Load r on Condition Code GT
LCLE 151 RGEN LTSTS Load r on Condition Code LE
LCLT 150 RGEN LTSTS Load r on Condition Code LT
LCNE 152 RGEN LTSTS Load r on Condition Code NE

P LDAR 44 MRS* MOVE Load from Addressed Register
LDC 0 162 RGEN CHAR Load Character
LDC 1 172 RGEN CHAR Load Character
LBQ QQ3 RGEN LTSTS Load r on R Equal to 0
LF 016 RGEN LTSTS Load False
LFEQ 023,03 RGEN LTSTS Load r on F Equal to 0
LFGE 024,03 RGEN LTSTS Load r on F Greater Than or

Equal to 0
LFGT 025,03 RGEN LTSTS Load r on F Greater Than 0
LFLE 021,03 RGEN LTSTS Load r on F Less Than or

Equal to 0
LFLI 0 001303 BRAN FTETD Load FIR 0 Immediate
LFLI 1 001313 BRAN FTETD Load FLR 1 Immediate
LFLT 020,03 RGEN LTSTS Load r on F Less Than 0
LFNE 022,03 RGEN LTSTS Load r on F Not Equal to 0
LGE 004 RGEN LTSTS Load r on R Greater Than or

Equal to 0LGT 005 RGEN LTSTS Load r on R Greater Than 0
LH 1 1 R I MRGR MOVE Load Halfword
LHBQ 013 RGEN LTSTS Load r on r Equal to 0
LHGE 004 RGEN LTSTS Load r on r Greater Than or

Equal to 0
LEiGT 015 RGEN LTSTS Load r on r Greater Than 0
LHLl 0 4 R MRGR MOVE Load Halfword Shifted Left

ty 1

C-17 Second Edition

INSTRUCTION SETS GUIDE

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func CC! D e s c r i p t i o n

LKE_2 14 MRC-2* MOVE Load Halfword Shifted Left
by 2

LHL3 35 MRGR MOVE Load Halfword Shifted Left
by 3

LHLE Oil RGEN LTSTS Load r on r Less Than or
Equal to 0

LHLT OOO RGEN LTSTS Load r on r Less Than 0
LHNE 012 RGEN LTSTS Load r on r Not Equal to 0

R KEOT y ^ K W j ^ r x AP MCTL Load IOTLB
LIP 65 MRGR GRR Load Indirect Pointer
LLE 001 RGEN LTSTS Load r on R Less Than or

Equal to 0LLT 000 RGEN LTSTS Load r on R Less Than 0
LNE 002 RGEN LTSTS Load r on R Not Equal to 0

R LPID 000617 GEN MCTL Load Process ID
R LPSW 000711 AP MCTL Load Process Status Word

LT 017 RGEN LTSTS Load True
M 42 RI MRQ* INT Multiply FullwordMH 52 RI MRCS* INT Multiply HalfwordN 03 RI MRGR LOGIC AND Fullword

R NFYB 001211 AP PRCEX N o t i f yR NFYE 001210 AP PRCEX N o t i f y
NH 13 RI MRGR LOGIC AND Halfword
NOP 000001 GEN MCTL No Operation
0 23 RI MRS* LOGIC OR Fullword
OH 33 RI MRCS* LOGIC OR Halfword
OTK 071 RGEN KEYS Output Keys
PCL 41 MRNR PCTU Procedure Call
PID 052 RGEN INT Position for Integer Divide
PHH 053 RGEN INT Position r for Integer

Divide
PIM 050 RGEN INT Position after Multiply
PIMH 051 RGEN INT Position r after Multiply
PRTN 000611 GEN PCTU Prooedure Return

R PTLB 000064 GEN MCTL Purge TLB
QFAD 36 MRFR FLPT Quad Precision Floating Add
QPC 47 RI MRFR FLPT Quad Precision Floating

Compare
QFCM 140570 GEN FLPT Quad Precision Floating

Complement
QFDV 46 MRFR FLPT Quad Precision Floating

Divide
QFLD 34 MRFR FLPT Quad Precision Floating Load
QFMP 45 MRFR FLPT Quad Precision Floating

M u l t i p l y
QFSB 37 MRFR FLPT Quad Precision Floating

Subtract

Second Edition C-18

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func CC! D e s c r i p t i o n

QFST 35 MRFR FLPT Quad Precision Floating Store
QINQ 140572 GEN FLPT Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPT Quad to Integer, in Quad

Convert Rounded
RBQ 133 AP QUEUE Remove Entry from Bottom

of Queue
RGB 140200 GEN KEYS Reset CBIT to 0

R RMC 000021 GEN INTGY Reset Machine Check Flag to 0
ROT 24 MRS* SHIFT Rotate
RRST 000717 AP MCTL Restore Registers
RSAV 000715 AP MCTL Save Registers
RTQ 132 RGEN QUEUE Remove Entry from Top of

Queue
R RTS 000511 GEN MCTL Reset Time Slice

S 22 RI MRGR INT Subtract Fullword
SCB 140600 GEN KEYS Set CBIT to 1
SOC 55 MRGR CPTR Store C Character
SH 32 RI MRO* INT Subtract Halfword
SHA 15 MRS* SHIFT Shift Arithmetic
SHL 05 MIO* SHIFT Shift Logical
SHLl 076 RGEN SHIFT Shift R Left 1
SHE_2 077 RGEN SHIFT Shift R Left 2
SHR1 120 RGEN SHIFT Shift R Right 1
SHR2 121 RGEN SHIFT Shift R Right 2
SL1 072 RGEN SHIFT Shift R Left 1
SE_2 073 RGEN SHIFT Shift R Left 2
SRI 074 RGEN SHIFT Shift R Right 1
SR2 075 RGEN SHIFT Shift R Right 2
SSM 042 RGEN INT Set Sign Minus
SSP 043 RGEN INT Set Sign Plus
SSSN 040310 GEN MCTL Store System Serial Number
ST 21 MRCS* MOVE Store Fullword

P STAR 54 MRQ* MOVE Store into Addressed Register
STC 0 166 RGEN CHAR Store Character
STC 1 176 RGEN CHAR Store Character
STCD 137 AP MOVE Store Conditional Fullword
STCH 136 AP MOVE Store Conditional Halfword
STEX 027 RGEN PCTU Stack Extend
STFA 0 001320 AP FIELD Store FAR 0
STFA 1 001330 AP FIELD Store FAR 1
STH 31 MRGR MOVE Store Halfword

R STPM 000024 GEN MCTL Store Prooessor Model Number
STTM 000510 GEN MCTL Store Prooess Timer
SVC 000505 GEN PCTU Supervisor CallTC 046 RGEN INT Two's Complement R
TCH 047 RGEN INT Two's Complement r

C-19 Second Edition

INSTRUCTION SETS GUIDE

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opcode RI Form Func C OC Description
TCNP 7 6 R MRNR CPTR Test C Null Pointer
TFLR 0 163 RGEN FIELD Transfer FTR 0 to R
TFLR 1 173 RGEN FIELD Transfer FTR 1 to R
TM 44 MRNR MCTL Test Memory Fullword
TMH Ot: MRNR INT Test Memory Halfword
TRFL 0 165 RGEN FIELD Transfer R to FTR 0
TRFL 1 175 RGEN FIELD Transfer R to FLR 1
TSTQ 104 RGEN QUEUE Test Queue

R WAIT 000315 AP PRCEX Wait
X 4 3 R I MRGR LOGIC Exclusive CR Fullword
XAD 001100 DECI DECI Decimal Add
XBTD 001145 DECI DECI Binary to Decimal ConversionXCM 001102 DECI DECI Decimal Compaxe
XDTB 001146 DECI DECI Decimal to Binary Conversion
XDV 001107 DECI DECI Decimal Divide
XED 001112 DECI DECI Numeric Edit
XH 5 3 R I MRGR LOGIC Exclusive CR Halfword
XMP 001104 DECI DECI Decimal Multiply
XMV 001101 DECI DECI Decimal Move
ZCM 001117 CHAR CHAR Compare Chaxacter FieldZED 001111 CHAR CHAR Character Field Edit
ZFIL 001116 CHAR CHAR Fill Field With Character
ZM 43 MRNR CLEAR Clear Fullword
ZMH 53 MRNR CLEAR Clear Halfword
ZMV 001114 CHAR CHAR Move Character Field
ZMVD 001115 CHAR CHAR Move Characters Between Equal

Length Strings
ZTRN 001110 CHAR CHAR Character String Translate

Second Edition C-20

Hardware
Consideration in

Performance

Several hardware considerations have bearing on performance. First,
some instructions execute faster than others. To identify these, this
document lists the relative instruction weights for V and I modes.
Special note is made of preferred load/store, arithmetic, and bulk data
move instructions for optimum execution times. Second, the type of
address formation also affects execution times. To identify these,
this appendix shows the relative weights of different address
formations; the performance penalties for unaligned data, cache miss,
STLB miss, and address traps axe also shown. Recommendations axe given
for how to use all of this information when coding in PMA or a high
level language.

Performance of emitted code or assembler coding of identified
time-crucial routines requires some knowledge of instruction execution
times. Prime has never given these out before for many reasons:

• Prime's 50 Series Processors are an entire line of machines that
have differing performances.

• The execution time of an instruction is based on many events
such as addressing mode and data alignment, making this a
complex issue.

• Contractual guarantees based on published times axe certain to
be wrong because of the previous point.

• There is a bad correlation of instruction times to MIPs in fact,
but not in the minds of the press. Hence we would mislead ty
giving specific times.

D - l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

Having said that, nevertheless, tuners must tune. The following tables
represent relative "best case" weights for the "perfect" 50 Series
machine. No actual machine has exactly this balance, but the 6350 and
9955 II come close.

INSTRUCTION WEIGHTS

To use these tables, locate the desired mnemonic and note its weight in
units. The following abbreviations axe used.

A — Equal to 0 if there are no PCL arguments. Equal to 8+6*n where
n is the number of arguments.

D — The number of destination digits.

N — In shift instructions, the number of shifts to perform. In
decimal and character instructions, the number of digits or
characters involved.

S — The number of souroe digits.

— The number of non-zero destination digits.

S e c o n d E d i t i o n D - 2

HARDWARE CONSIDERATIONS IN PERFORMANCE

Table D-l
V Mode Instruction Weights

Mnem U n i t s Mnem U n i t s Mnem U n i t s Mnem Units 1

A1A HE_S E64V INTA 14 1
A2A BLT EAFA INTL 14 1
ABQ 20 BMEQ EAL IRS 3 1
ACA BMGE EALB IRTC 9 I
ADD BM3T EAXB IRTN 4 1
ADL BM3T EIO 12 IPX 2 1
ADLL BMLE EMCM ITLB 8 1
ALFA BMLT ENB JMP 2 1
ALL N+2 BMNE ERA JST 7 1
ALR N+2 BNE ERL JSX 5 1
ALS N+2 CAI ESIM JSXB 5 1
ANA CAL EVIM JSY 5 1
ANL CALF 63 FAD LCEQ 2 1
ARGT See PCL CAR FCM LOGE 2 1
ARL N+2 CAS FCS -LOOT 2 1
ARR N+2 CAZ FEEL LCLE 2 1
ARS N+2 OCT FDV 38 LCLT 2 1
ATQ 20 CHS FID LCNE 2 1
BCEQ CE_S FLTA 10 LDA 1 1
BOGE CMA FLTL 15 LDC 10 1
BOGT CRA FLX LE3L 1 1
BCLE CRB FMP LEti* 11 1
BCLT CRE FRN 14 LDX 1 1
BCNE CRL FRNM LDY 1 1
BCR CRLE FRNP 11 LEQ 3 1
BCS CSA FRNZ 12 LF 2 1
BEK EFAD FSB I_FEQ 4 1
BDY DFCM FSGT LFGE 4 1
BBQ DPCS FSLE LFGT 4 1
BFEQ DFDV 38 FSMI LFLE 4 1
BPGE EFLD FSNZ LFL I 2 1
BPGT DFLX FSPL LFLT 4 1
BFLE EFMP 15 FST __FNE 4 1
BFLT DFSB FSZE LGE 3 1
BFNE DFST HLT I.GT 3 1
BGE DIV 20 IAB KEOT 3 7 1
BGT ERN 14 ICA LLE 3 1
BIX ERNM ICL LLEQ 3 1
BIY ERNP 10 IO* LUGE 3 1
BLE ERNZ ILE LLGT 3 1
BL0Q ERX IMA LLL N+2 1
BLGE EVL 47 INBC 40 T.T.T.K 3 1
BLOT E16S INBN 35 LLLT 3 1
RT.T.E E32I INEC 40 LLNE 3 1
BELT E32R INEN 35 LLR N+2 1
BLNE E32S INH LLS N+2 1
HEi* E64R INK LLT 3 1

D-3 Second Edition

INSTRUCTION SETS GUIDE

Table D-l (Continued)
V Mode Instruction Weights

I Mnem Uni ts Mnem Uni ts Mnem Uni ts Mnem Units 1

1 LMCM QFST 19 SR3 10 TAX 1 1
1 LNE QINQ 55 SR4 10 TAY 1 1
1 LPID QIQR 56 SRC TBA 1 1
1 LPSW 14 RBQ 20 SSI 10 TCA 2 1
1 IRL N+2 RGB SS2 10 TCL 2 1
1 LRR N+2 RMC 15 SS3 10 TFLL 3 1
1 IRS N+2 RRST 44 SS4 10 TKA 3 1
1 LT RSAV 85 SSC TLFL 2 1
1 MPL 13 RTQ 18 SSM TSTQ 7 1
1 MPY RTS 10 SSP TXA 1 1
1 NFYB 35 SIA SSR 10 TYA 1 1
1 NFYE 35 S2A SSS 10 WAIT 5 8 1
1 NOP SAR SSSN 37 XAD 76+3*N 1
1 CRA SAS STA XBTD 40+5*N 1
1 OTK SHL STAC XCA 2 1
1 PCL 40+A SCB STC 12 XCB 2 1
1 PIDA SGT STEX XCM 80+2*N 1
I PIDL SKP STFA XETB 40+5*N 1
1 PIMA SLE STL XDV 90+65*# 1
1 PIML SEN STLC XEC 9 l
1 PRTN 16 SIZ STU* 13 XED Va r i e s I
1 PTLB 400 SMCR STPM 12 XMP 88+15*S*D 1
1 QFAD 56 SMCS STTM 17 XMV 80+3*N 1
1 QFCM 10 SMI STX ZCM 20+N 1
1 QFCS 39 SNR 10 STY ZED Var ies 1
1 QFDV 489 SNS 10 SUB ZFIL 14+0.5*N 1
1 QFLD 14 SNZ SVC 36 ZMV 18+0.75*N 1
1 QFLX SPL SZE ZMVD 14+0.75*N l
1 QFMP 65 SRI 10 TAB ZTRN 14+8*N 1
1 QFSB 57 SR2 10 TAK

Second Edition D-4

HARDWARE O0NSIDEE*ATICNS IN PERFORMANCE

Table D-2
I Mode Instruction Weights

I Mnem Uni ts Mnem Uni ts Mnem Un i t s Mnem Units 1

1 A BRD4 E16S INT 1 4 1
1 ABQ 20 BRBQ E32I INTH 1 4 1
1 ACP BRGE E32R IR1 1 1
1 ADLR BRGT E32S IR2 1 1
1 AH BRIl E64R IRB 1 1
1 AIP BRI2 E64V IRH 2 1
1 ARFA BRI4 EAFA IRTC 9 1
1 ARGT See PCL BRLE EALB IRTN 4 1
1 ATQ 20 BRLT EAR ITLB 8 1
1 BCBQ ERNE EAXB JMP 2 1
1 BOGE EIO 12 JSR 5 1
1 BOGT CAI EMCM JSXB 5 1
1 BCLE CALF 63 ENB 1 1
1 BOLT OCP ESIM LOC 3 1
1 BCNE OCT EVTM LCEQ 2 1
1 BCR CH PA LOGE 2 1
1 BCS CHS PC 10 LOGT 2 1
1 BFEQ CMH PCM LCLE 2 1
1 BPGE CMR FD 38 LCLT 2 1
1 BPGT CR FL LCNE 2 1
1 BFLE CRBL FLT 15 LDAR 1 1 1
1 BFLT CRBR FLTH 10 LDC 1 0 1
1 BFNE CRHL FM LBQ 3 1
1 BHD1 CRHR FRN 14 LF 2 1
1 BHD2 CSR FRNM LFEQ 4 1
1 BHD4 47 FRNP 11 LFGE 4 1
1 BHEQ DRTiE FRNZ 12 LPGT 4 1
1 BHGE DCP FS LFLE 4 1
1 BBCT EFA FST LFLI 2 1
1 EKEl DPC 10 HLT LFLT 4 1
1 BHI2 DFCM LFNE 4 1
1 BHI4 DFD 38 ICBL LGE 3 1
1 BHLE DFL ICBR LGT 3 1
1 BHLT DFM 15 ICHL LH 1 1
1 BHNE EFS ICHR LHEQ 3 1
1 HER DFST ICP LHGE 3 1
1 ELS EH 20 IH LHGT 3 1
1 BMEQ EH1 IH1 LHLl 1 1
1 BMGE EH2 IH2 IHL2 1 1
1 BMCT EM IM LHLE 3 1
1 BMLE EMH BfH LHLT 3 1
1 BMLT ER1 INBC 40 LHNE 3 1
1 BMNE ER2 INBN 35 LIOT 3 7 1
1 BRER ERN 14 INEC 40 LIP 2 1
1 BRBS ERNM INEN 35 LE_E 3 1
1 BRD1 ERNP 10 INH LLT 3 1
1 BRD2 ERNZ INK I_MCM 4 1

D-5 Second Edition

INSTRUCTION SETS GUIDE

Table E)-2 (Continued)
I Mode Instruction Weights

I Mnem U n i t s Mnem U n i t s Mnem U n i t s Mnem Units 1

1 LNE QFDV 489 SHR2 TMH 1 1
1 LPID QFLD 14 SL1 TRFL 2 1
1 LPSW 14 QFMP 65 SE_2 TST$ 7 1
1 LT QFSB 57 SRI WAIT 5 8 1
1 M 13 QFST 19 SR2 1 1
1 MH QINQ 55 SSM XAD 76+3*N 1
1 N QIQR 56 SSP XBTD 40+5 *N 1
1 NFYB 35 RBQ 20 SSSN 37 XCM 80+2*N 1
1 NFYE 35 RCB ST XDTB 40+5*N 1
1 NH RMC 15 STAR 13 XDV 90+65*# 1
1 NOP ROT N+2 STC 12 XED Va r i e s 1
1 0 RRST 44 STCD XH 1 I
1 OH RSAV 85 STCH XMP 88+15*S*D 1
1 OTK RTQ 18 STE_X XMV 80+3*N 1
1 PCL 40+A RTS 10 STFA ZCM 2 0 + N 1
1 PID STH ZED V a r i e s I
1 PIDH SOB STPM 12 Z F I L 14+0.5*N 1
1 PIM SOC STTM 17 ZM 2 1
1 PIMH SH SVC 36 ZMH 2 1
1 PRTN 16 SHA N+2 TC ZMV 18+0.75*N 1
1 PTLB 400 SHL N+2 TCH ZMVD 14K).75*N 1
1 QFAD 56 SHLl TCNP ZTRN 14+8*N 1
1 QFC 24 SHE_2 TFT_R
1 QFCM 10 SHR1 TM

Examination of the V and I mode instruction weights shows that certain
instructions have much activity in them and thus take much longer to
complete execution. Such instructions include STIR/LDLR and STAR/LDAR
(both 13/11 units) that store/load the L register into the addressed
register. Other such instructions are RSAV/RRST (44/85 units) that
save/restore all registers.

Other instructions are very fast, such as the long loads (LDL and L) at
one unit each.

Prime prooessor designers have worked hard to make the instructions
that "feel" fast be fast. "Cute" uses of instructions are usually
punished by reduced performance. An example of "cute" instruction use
is LEK# 2 instead of STL Temp, LDX Temp+1. Clever use exploits the
address modes and multiple index registers to save instructions.
Clever use of registers can save stores, but shuffling data from one
register to another (even in I mode) to save a store has little value.

Second Edition D-6

HARDWARE CONSIDERATIONS IN PERFORMANCE

Restricted instructions axe shown in these tables. Even though several
of these are heavily weighted, they axe not discussed here since they
axe Ring 0 instructions.

Also, short integer (16-bit) instructions take less time to execute
than long integer (32-bit) ones, particularly in the case of multiplies
and divides. For V mode, long integer arithmetic mnemonics end in "L",
such as MPL and DVL, while short integer ones do not, as in MPY and
DIV. I mode short integer mnemonics end in "H" (half register), such
as MH and EH, while long integer ones are simply M and D for multiply
long and divide long.

For all processors, be sure to use the ZMVD (Move Characters between
Equal Length Strings) instruction when moving bulk data. ZMVD is the
most efficient means for data moving. All of Prime software is
learning to use this instruction for bulk data transfers. Prime
processors are optimized for ZMVD.

The advantage of using these tables of weighted instruction times is
obvious if you axe prcgramming in PMA. If you are programming in a
high level language such as FORTRAN or Pascal, however, you first need
to generate an expanded listing when you axe compiling your souroe
program. Such a listing shows the PMA code that the compiler generated
for each source statement. Simple arithmetic will show the approximate
relative weights that each souroe statement takes.

EXTENSIONS TO INSTRUCTION WEIGHTS

Unfortunately, no simple calculation can accurately produce the actual
instruction time of any modern machine (including all of Prime's, of
course). Many factors influence the execution of a single instruction.
The most important is, of course, the prooessor type. However, many
other factors also affect execution time. Address formation and
virtual memory considerations are shown in Table D-3. Other factors
axe harder to describe and so are deemed less important. Among them
axe I/O (EMx) and process exchange activity, interprocessor locking (on
the P850), memory refresh, EOOC's, etc.

Table D-3 shows that indexing adds no further time to the basic
instruction while indirection adds 1 unit. Unaligned data also adds 1
unit, so be sure to align data on even word (32-bit) boundaries in
common blocks. Prime software provides for proper data alignment if
possible. Address traps add considerably more time to instruction
execution. Read or write address traps add 8 units apiece, and should
be avoided. An address trap is invoked in V mode short instructions if
the final address is to memory from 0 to 7. The trap is to register
file locations.

A time penalty is paid whenever there is a cache miss (13 units) or an
STLB miss (31 units), since the virtual-to-physical address translation
prooess has to occur. The more pages used in a program, the higher the
probability of a cache miss, STLB miss or a page fault. As a rule of

D - 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

thumb to keep these delays down, ensure that your programs have their
most frequently-used subroutines loaded together — do not load
subroutines on an alphabetic basis.

Table D-3

Comparative Weighting
Address Formation High End for 321 Mode

Va n i l l a 1.P0O 1 unit

Indexed 1,F00, 2 1 unit

Reg-Reg 1,2 1 unit

Immediate 1,-10 1 unit

I n d i r e c t 1,P$P00,* 2 units

I n d i r e c t 1,P$P00,*2 2 units (postindexed)

Unaligned 1,P00 2 units

Cache miss 1.P00 14 units (1 only)

STLB miss 1.P0O 32 units (1 only)

Worst case L 1,P$P00,* 179 uni ts
(Four STLB and Cache misses, Indirect, I.P.

Address Traps:

LDA# 6

DFST TEMP
IDA TEMP+3

STA# 6

STA TEMP+3
DFLD TEMP

9 units

6 units

9 units

4 units

and operand unaligned.)

(Read address trap)

(Better practice)

(Write address trap)

(Better practice)

"Normal" cache hit rate of 98 percent
"Normal" STLB hit rate of 99 percent

Second Edition D-8

Archived Instructions

This appendix contains archived S, R, V, and I mode instructions.
These instructions support options that axe no longer offered, or they
support functions that are no longer used. Table E-1 contains a
summary of the archived instructions. (This table is in the same
format as those in Appendix C.) The descriptions of these instructions
follow Table E-1.

Table E-1
Archived Instruction Summary

R Mnem Opcode Form Func C OC Descr ip t ion

IO SRVI - - Clear Active Interrupt
PCTU R - - Call Recursive Entry

Prooedure
6 5 Control Extended Control

Store
INTGY SRVI - - Enter Machine Check Mode
PCTLJ R - - Enter Recursive Prooedure

Stack
IO SRVI - - Enter Standard Interrupt Mode
IO SRVI - - Enter Vectored Interrupt Mode
PCTLJ R - - Jump on A Equal to 0
PCTLJ R - - Jump on A Greater Than or

Equal to 0

R CAI 000411 GEN
CREP 02 MR

CXCS 001714 GEN MCTL VI

R EMCM 000503 GEN
ENTR 01 03 MR

R ESIM 000415 GEN
R EVIM 000417 GEN

JBQ 02 03 MR
JGE 07 03 MR

E-1 Second Edition

INSTRUCTION SETS GUIDE

Table E-1 (continued)
Archived Instruction Summary

R Mnem Opcode Form Func C OC Desc r ip t i on

JGT
JLE

05 03
04 03

MR
MR

JLT 06 03 MR
JNE 03 03 MR

R LMCM 000501 GEN
LWCS 001710 GEN

R MEEI 001304 GEN

R MDII
R MDIW
R MERS
R MDWC

MIA
MIA
MIB
MIB
NRM
RTN
SCA

R SNR

001305
001324
001306
001307
64
12 01
74
13 01
000101
000105
000041
10024X

GEN
GEN
GEN
GEN
MRGR
MR
MRGR
MR
GEN
GEN
GEN
GEN

PCTLJ R
PCTLJ R

PCTLJ R
PCTLJ R
INTGY SRVI
MCTL VI
INTGY VI

INTGY VI
INTGY VI
INTGY VI
INTGY VI
MCTL
MCTL
MCTL
MCTL
INT SR
PCTLJ SR
I N T S R
SKIP SRV

R SNS 10124X GEN SKIP SRV

R SRI 100020 GEN SKIP SRV

8 -

R SR2 100010 GEN SKIP SRV -

R SR3 100004 GEN SKIP SRV -

R SR4 100002 GEN SKIP SRV -

R SSI 101020 GEN SKIP SRV -

R SS2 101010 GEN SKIP SRV -

R SS3 101004 GEN SKIP SRV -

R SS4 101002 GEN SKIP SRV -

R SSR 100036 GE-N SKIP SRV -

R SSS 101036 GEN SKIP SRV -

VIRY 000311 GEN INTGY SRVI 6
WCS 0016XX GEN MCTL RV I -
XVRY 001113 MCTL GEN V I 6

Second Edition E-2

Jump on A Greater Than 0
Jump on A Less Than or Equal

to 0
Jump on A Less Than 0
Jump on A Not Equal to 0
Leave Machine Check Mode
Load Writable Control Store
Memory Diagnostic Enable

Inter leave
Inhibit Interleaved
Write Interleaved
Read Syncrome Bits
Load Write Control Register
Microcode Entrance
Microcode Entrance
Microcode Entrance
Microcode Entrance
Normalize
Return
Load Shift Count into A
Skip on Sense Switch N Reset

to 0
Skip on Sense Switch N Set

to 1
Skip on Sense Switch 1 Reset

to 0
Skip on Sense Switch 2 Reset

to 0
Skip on Sense Switch 3 Reset

to 0
Skip on Sense Switch 4 Reset

to 0
Skip on Sense Switch 1 Set

to 1
Skip on Sense Switch 2 Set

to 1
Skip on Sense Switch 3 Set

to 1
Skip on Sense Switch 4 Set

to 1
Skip on All Sense Switches

Reset to 0
Skip on Any Sense Switches

Set to 1
Ve r i f y
Write Control Store
Verify XIS

ARCHIVED INSTRUCTIONS

^ CAI
Clear Active Interrupt
OOOOOOOIOOOOIOOI (S.R, V, I mode form)

Clears the current active interrupt. Effective only in vectored
interrupt mode. Inhibits interrupts for one instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ CREP address
Call Recursive Entry Prooedure
1X100011000010 CB\2 (R mode form)
[DISPLACEMENT\16]

Increments the contents of the program counter and loads the result
into the location following the one specified by the current value of
the R mode stack pointer. Calculates an effective address, EA, and
loads it into the program counter. Execution continues with the
location specified by the new value of the program counter.

This instruction performs subroutine linkage for reentrant or recursive
procedures. CREP stores the return address in bits 17-32 (the second
halfword) of a stack frame created by the ENTR instruction, rather than
in the destination address as JST does. Leaves the values of CBIT,
LINK, and the condition codes indeterminate.

^ CXCS
Control Extended Control Store
0000001111001100 (V, I mode form)

Moves the A register contents to the control register on the writable
control store board. Leaves the values of CBIT, LINK, and the
condition codes indeterminate.

▶ EMCMEnter Machine Check Mode
0000000101000011 (S, R, V, I mode form)

Enters machine check mode 3 by loading 3 into modal bits 15-16. This
mode enables the reporting of all errors. The actions taken upon an
error depend on whether the nuachine was in prooess exchange mode or
not.

E - 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

The instruction i nhi bits interrupts during execution of the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged. See Chapter 10 of the .System Architecture Reference Guide
for more information about checks.

If an error occurs in prooess exchange mode, the microcode stores the
machine state in the appropriate check vector and transfers control to
that vector, automatically dropping back to machine check mode 0.

If an error occurs when the machine is not in process exchange mode,
the following actions occur. If the appropriate check vector contains
a nonzero value, the prooessor jumps indirectly through this vector to
the check routine. If the check vector location contains 0, the
machine halts.

Note

This is a restricted instruction.

^ ENTR n
Enter R Mode Recursive Prooedure Stack
1X000111000011 CB\2 (R mode long form)
[DISPLACEMENTS]

Creates a save area n halfwords long. (A halfword is 16 bits.) Saves
the current value of the R mode stack pointer in the first halfword of
the save area. The starting address of the save area is:

(contents of R mode stack pointer) - n

This means that the instruction creates a stack frame containing n
locations, and that the first location points to the previous frame.

The ENTR instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

^ ESIMEnter Standard Interrupt Mode
0000000100001101 (S, R, V, I mode form)

Enters standard interrupt mode by resetting bit 2 of the modals to 0.
Inhibits interrupts for one instruction. ESIM is meaningless when the
system is in process exchange mode (that is, the value of modal bit 13
is 1). All interrupts use location '63. The prooessor services
interrupts according to their relative positions on the I/O bus. Lower
devices have higher priority. Inhibits interrupts during execution of
the next instruction. Leaves the values of CBIT, LINK, and the
condition codes unchanged. Refer to Chapter 10 of the System
Architecture Reference Guide for more information about interrupts.

S e c o n d E d i t i o n E - 4

ARCHIVED INSTRUCTIONS

Note

ESIM is a restricted instruction.

^ EVIM
Enter Vectored Interrupt Mode
0000000100001111 (S, R, V, I mode form)

Enters vectored interrupt mode ty setting bit 2 of the modals to 1.
EVTM is meaningless when the system is in process exchange mode (that
is, the value of modal bit 13 is 1). The prooessor services interrupts
according to their relative positions on the I/O bus. Lower devices
have higher priority. Interrupts occur through a location specified ty
the interrupting device. Inhibits interrupts during execution of the
next instruction. Leaves the values of LINK, CBIT, and the condition
codes unchanged. Refer to Chapter 10 of the System Architecture
Reference Guide for more information about interrupts.

Note

This is a restricted instruction.

▶ JEQ address
Jump on A Equal to 0
1X001011000011 CB\2 (R mode form)
[DISP__ACEMENT\16]

Calculates an effective address, EA. Loads EA into the program counter
if the contents of A are equal to 0. If the contents of A are not
equal to 0, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

^ JGE address
Jump on A Greater Than or Equal to 0
1X011111000011 CB\2 (R mode fo rm)
[DISPLACEMENTS]

Calculates an effective address, EA. If the contents of A are greater
than or equal to 0, the instruction loads EA into the program counter.
If the contents of A axe less than 0, execution continues with the next
instruction. Leaves the contents of CBIT, LINK, and the condition
codes unchanged.

E - 5 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ JOT address
Jump on A Greater Than 0
I X O l O l l l O O O O l l G B \ 2 (R m o d e f o r m)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than 0, the instruction loads EA into the program counter. If the
contents of A are less than or equal to 0, execution continues with the
next instruction. Leaves the contents of CBIT, LINK, and the condition
codes unchanged.

▶ JLE address
Jump on A Less Than or Equal to 0
1X010011000011 CB\2 (R mode form)
[DISPI_ACEMENT\16]

Calculates an effective address, EA. If the contents of A axe less
than or equal to 0, the instruction loads EA into the program counter.
If the contents of A are greater than 0, execution continues with the
next instruction. Leaves the contents of LENK, CBIT, and the condition
codes unchanged.

^ JLT address
Jump on A Less Than 0
1 X 0 11 0 11 0 0 0 0 11 C B \ 2 (R m o d e f o r m)
[DISPI_ACEMENT\16]

Calculates an effective address, EA. If the contents of A are less
than 0, the instruction loads EA into the program counter. If the
contents of A axe greater than 0, execution continues with the next
instruction. Leaves the contents of CBIT, KENK, and the condition
codes unchanged.

▶ JNE address
Jump on A Not Equal to 0
1 X 0 0 1111 0 0 0 0 11 C B \ 2 (R m o d e f o r m)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A do not equal
0, the instruction loads EA into the program counter. If the contents
of A are equal to 0, execution continues with the next instruction.
Leaves the contents of CBIT, LINK, and the condition codes unchanged.

S e c o n d E d i t i o n E - 6

ARCHIVED INSTRUCTIONS

^ I-MCM
Leave Machine Check Mode
OOOOOOOIOIOOOOOI (S, R, V, I mode form)

Leaves machine check mode ty setting bits 15-16 of the modals to 00.
If a machine parity error occurs in this mode, the hardware sets the
machine check flag but no check (V mode) or interrupt (S, R modes)
occurs. Inhibits the machine for one instruction. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

^ LWCS
Load Writable Control Store
0000001111001000 (V, I mode form)

Loads the writable control store portion of the extended control store
board from the memory block pointed to ty XB. The control register
loaded ty CXCS modifies this instruction. Leaves the values of CBIT,
LINK, and the condition codes indeterminate.

▶ MDEI
Memory Diagnostic Enable Interleave
0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 (V , I m o d e f o r m)

Enables the memory interleave facility. Leaves the values of KENK,
CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

▶ MDII
Memory Diagnostic Inhibit Interleave
0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 (V , I m o d e f o r m)

Inhibits the memory interleave facility. Leaves the values of LINK,
CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

E - 7 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ MDIW
Memory Diagnostic Write Interleaved
0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 (V , I m o d e f o r m)

Writes interleaved memory. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

▶ MERS
Memory Diagnostic Read Syndrome Bits
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 (V , I m o d e f o r m)

Reads memory syndrome bits. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

▶ MDWC
Memory Diagnostic Load Write Control Register
0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 (V , I m o d e f o r m)

Writes memory control register. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This is a restricted instruction.

^ MIA
Microcode Execute A
IX101011000Y01 BR\2 (V mode long form)
DISPI_ACEMENT\16

110 10 0 ER\3 TM\2 SR\3 BR\2 (I mode form)
[DISPLACEMENTS]

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the System Architecture Reference Guide.

S e c o n d E d i t i o n E - 8

ARCHIVED INSTRUCTIONS

^ MIB
Microcode Execute B
I X 1 0 1111 0 0 0 Y 0 1 B R \ 2 (V m o d e l o n g)
DISPI_A(2EMENT\16

11110 0 ER\3 TM\2 SR\3 BR\2 (I mode form)
[DISPLACEMENTS]

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the system Architecture Reference Guide.

^ NRM
Normalize
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 (S , R m o d e f o r m)

Shifts the 31-bit integer in A and B to the left arithmetically,
shifting in Os into bit 16 of B. The shift does not affect hit 1 of B
or bit 1 of A. The instruction shifts bits out of bit 2 in A until the
value of bit 2 is opposite the value of bit 1 in A. Loads bits 9-16 of
the S and R mode keys with the number of shifts performed.

Normalizing 0 on all machines results in the following: zeros axe
loaded in bits 9-16 of the keys; bit 1 of the B register is ignored in
the test for zero. Bit 1 of the B register may be reset or left
unchanged, depending on the processor.

Leaves the values of CBIT and the condition codes unchanged; the value
of LINK is indeterminate.

Note

Since the bits shifted out of bit 2 in A contain copies of the
sign of the 31-bit number, the shift results in no loss of
information.

▶ RTN
Return
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 (R m o d e f o r m)

Returns control from a P300 recursive prooedure to the calling routine.
To do this, RTN fetches the return address from the second halfword of
the previous stack frame and loads the result in the program counter.
RTN then transfers halfword 1 (the pointer to the preceding stack
frame) to the S register. (A halfword is 16 bits.)

(S)+l -> P
(S) -> S

E - 9 S e c o n d E d i t i o n

INSTRUCTION SETS GUTDE

If the return address is 0, (S) is unchanged and a PSU (Procedure Stack
Underflow) fault is taken (interrupt through location '75 in physical
memory is taken on the Prime 300). Leaves the values of LINK, CBIT,
and the condition codes unchanged.

Note

This instruction reverses the actions done ty CREP and ENTR.

^ SGA
Load Shift Count Into A
0000000000100001 (S, R mode form)

Loads the contents of bits 9-16 of the keys into bits 9-16 of A.
Clears bits 1-8 of A to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The SCA instruction is used with NRM.

^ SNR n
Skip on Sense Switch N Reset to 0
1 0 0 0 0 0 0 0 1 0 1 0 N\4 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of sense
switch N are 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

N specifies the sense switch to test.

Note

This is a restricted instruction.

^ SNS
Skip on Sense Switch N Set to 1
1 0 0 0 0 0 1 0 1 0 1 0 N\4 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
N is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

N specifies the sense switch to test.

S e c o n d E d i t i o n E - 1 0

ARCHIVED INSTRUCTIONS

Note

SNS is a restricted instruction.

^ SRI
Skip on Sense Switch 1 Reset to 0
1000000000010000 (S, R, V mode fonn)

Skips the next sequential 16-bit halfword if the value of sense switch
1 is 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

^ SR2
Skip on Sense Switch 2 Reset to 0
1000000000001000 (S, R, V mode form)

Skips the next sequential 16-hit halfword if the value of sense switch
2 is 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

^ SR3
Skip on Sense Switch 3 Reset to 0
1000000000000100 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
3 is 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

E - l l S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ SR4
Skip on Sense Switch 4 Reset to 0
lOOOOOOOOOOOOOlO (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4 is 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is is a restricted instruction.

^ SSI
Skip on Sense Switch 1 Set to 1
1000001000010000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
1 is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

^ SS2
Skip on Sense Switch 2 Set to 1
1000001000001000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
2 is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

^ SS3
Skip on Sense Switch 3 Set to 11000001000000100 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
3 is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

S e c o n d E d i t i o n E - 1 2

ARCHIVED INSTRUCTIONS

Note

This is a restricted instruction.

^ SS4
Skip on Sense Switch 4 Set to 1
1000OO100OO0001O (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4 is 1. Leaves the values of CBIT, KENK, and the condition codes
unchanged.

Note

This is a restricted instruction.

▶ SSR
Skip on All Sense Switches Reset to 0
1000000000011110 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the values of sense
switches 1, 2, 3, and 4 are all 0. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

Note

This is a restricted instruction.

^ SSS
Skip on Any Sense Switches Set to 1
1000001000011110 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the values of sense
switches 1, 2, 3, and 4 are all 1. Leaves the values of CBIT, KENK,
and the condition codes unchanged.

Note

This is a restricted instruction.

E - 1 3 S e c o n d E d i t i o n

INSTRUCTION SETS GUIDE

▶ VIRY
V e r i f y 0 3 1 1 o p c o d e
0000000011001001 (S, R, V mode form)

Executes the verification routine. If there is a failure of any kind,
the processor goes on to the next instruction with the number of the
test that failed in register A. If there axe no errors, the prooessor
skips the next sequential instruction.

If the prooessor does not have the verification routine, this
instruction executes as no-op.

▶ WCS n
Writable Control Store
0 0 0 0 0 0 1 1 1 0 N\6 (R, V, I mode form)

Reserved set of 64 op codes to serve as microcode entrances, where n is
0 through 653.

^ XVRY
XIS Board Verify 1113 opcode
0000001001001011 (S, R, V mode form)

XVRY executes a Prime 500 microcode diagnostic routine tht checks the
integrity of the XIS board. If the XIS board is not functional, the
prooessor does not skip the next instruction and the A register holds
the failed micro-diagnostic test number. If the prooessor passes the
verify instruction, it skips the next instruction.

The codes and tests are:

'72 Data Move Test - Load and Unload XIS Board
'73 Normalize Test - Adjust Test
'74 Binary Multiply
'75 Binary Divide
'76 Decimal Arithmetic

S e c o n d E d i t i o n E - 1 4

2455 Instruction Sets

The 2455 processor has now been added to the Prime 50 Series computers.
This new processor shares the architecture and operating system that is
common to all 50 Series processors and makes the 50 Series a line of
completely upward-compatible and downward-compatible systems.
The implementation of the common axchitecture, however, can be slightly
different for each member of the 50 Series, allowing the different
processors to address a wide variety of user needs while remai ni ng
compatible.

The architectural implementation of the 2455 is identical to that of
the 2755 processor. This means that instruction set features that
apply to the 2755 apply equally well to the 2455. The only exception
to this is the STPM (Store Processor Model) instruction: the prooessor
model number code for the 2455 is 32L (clecimal).

F - l S e c o n d E d i t i o n

SURVEY

r

READER RESPONSE FORM

Instruction Sets Guide DOC9474-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization
of our publications.

1. How do you rate this document for overall usefulness?

□ excel lent D very good D good D fair D poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better □ Slightly better □ About the same
D Much worse O Slightly worse D Can't judge

5. Which other companies' manuals have you read?

N a m e : P o s i t i o n :

Company:
Add ress:

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	About This Book
	vii
	viii
	ix
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	Chapter 2
	S, R, and V Mode
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	2-95
	2-96
	2-97
	2-98
	2-99
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	Chapter 3
	I Mode
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	3-96
	3-97
	3-98
	3-99
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	Appendices
	Appendix A
	Condition Code Information
	A-1
	A-2
	Appendix B
	Addressing Information
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	Appendix C
	Instruction Summary Charts
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	Appendix D
	Hardware Considerations in Performance
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	Appendix E
	Archived Instructions
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	E-12
	E-13
	E-14
	Appendix F
	2455 Instruction Sets
	F-1
	Survey
	
	

